Skip to main content

Table 2 Mathematical models for comparison of dissolution profiles Amoxicillin-potassium clavulanate 625 mg tablets

From: Dissolution profile evaluation of selected brands of amoxicillin-clavulanate potassium 625 mg tablets retailed in Hawassa town, Sidama Regional State, Ethiopia

Models

Equation

Zero-order kinetic model

\(\text{Q}\text{t}=\text{Q}0+\text{K}0\text{t}\)

First-order kinetic model

\(\text{l}\text{o}\text{g}\text{Q}\text{t}=\text{l}\text{o}\text{g}\text{Q}0-\text{k}1\text{t}/2.303\)

Second-order kinetic model

\(\frac{1}{Q}=k.t+\frac{1}{Qo}\)

Higuchi kinetic model

\(\text{Q}\text{t}=\text{K}\text{h}\times \text{t}{{}^{1}\!\left/{}_{2}\right.}\)

Weibull kinetic model

\(log[-ln(1-m\left)\right]=\beta log(t-Ti)-log\alpha\)

Hixson-Crowell kinetic model

\(\sqrt[ 3]{\text{Q}\text{o}}-\sqrt[3]{\text{Q}\text{t}}=\text{K}\text{h}\text{c}.\text{t}\)

Korsemeyer-Peppas kinetic model

 \(\mathrm{Mt}/\mathrm M\;\propto\;=\;\mathrm{Ktn}\) 

  1. Qt is the amount of drug released in time t, Qo is the initial amount of drug, and \(\text{M}\text{t}/\text{M}\propto\) is the amount of drug released at time t/the amount of drug released at infinite time t
  2. m is accumulated fraction of the drug, β is shape parameter, and α is scale parameter
  3. Ti is location parameter; n is releasing exponent; and ko, k1, kh, khc, and k are releasing rate constant