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Abstract

The comparison of quality attributes is a key element in the evaluation of both biosimilars and manufacturing
process changes for biological medicines. Different statistical approaches are proposed to facilitate such evaluations.
However, there is no regulatory consensus on a quantitative and scientifically justified definition and an underlying
hypothesis of a statistically equivalent quality. The latter is essential to calculate operating characteristics of different
approaches. This article proposes a hypothesis for establishing statistically equivalent quality which is concordant
with current regulations. It also describes a tool which allows comparisons of different statistical approaches or tests
by calculating the operating characteristics for false acceptance and false rejection rates of a claim for statistically
equivalent quality. These error rates should be as low as possible to allow a meaningful application of a statistical
approach in regulatory decision making. The described tool can be used to compare different statistical approaches for
their suitability and may also facilitate the discussion and development of statistical approaches for comparing quality

attributes in similarity assessments in general.
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Introduction

Biosimilars are highly similar to a previously licensed
biological reference product (U. S. Food and Drug
Administration Guidance for Industry 2015; European
Medicines Agency 2014). Equally, regulators require that
biological medicines that undergo a manufacturing
process change are demonstrated to be highly similar to
the version of the medicine before the process change
(ICH Harmonised tripartite guideline Q5E 2004). In
both cases a thorough comparison of the quality attri-
butes such as the physicochemical and functional attri-
butes sets the foundation to establish the high similarity.
Clinical studies are rarely needed for introduction of
process manufacturing changes and are used in a tai-
lored manner during biosimilar development, which puts
the major burden of proof on the comparison of quality
attributes (U. S. Food and Drug Administration
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Guidance for Industry 2015; European Medicines
Agency 2014; McCamish and Woollett 2012). Notably,
the definition of “high similarity” includes a certain dis-
cretion and allows for differences between the two prod-
ucts in quality attributes if sufficient product
understanding is available to conclude that those differ-
ences are clinically meaningless. Many quality attributes
may also show a certain but controlled variability be-
tween different production lots of a given product
(Lamanna et al. 2017; Schiestl et al. 2011; Kim et al.
2017). Regulatory guidelines request that manufacturers
control the critical quality attributes of biologics to stay
within appropriate ranges or limits, so that the quality
and clinical properties remain consistent over time (ICH
harmonised tripartite guideline Q7 2000; ICH Harmo-
nised tripartite guideline Q8(R2) 2009). Comparing quality
attributes in a similarity exercise requires the comparison
of different lots to describe and analyze the variability be-
tween them. Different non-inferential and inferential stat-
istical approaches have been proposed with the aim to
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increase objectivity and robustness of these assessments
(Tsong et al. 2017; Chow et al. 2016). The simplest ap-
proach is the visual display. Other approaches compare the
test sample with observed (MinMax) or estimated ranges of
the reference sample, such as xSigma or tolerance intervals.
Yet another approach is equivalence testing of means.
However, the application of statistics is not as easy as it
may appear at the first glance. In 2018 FDA withdrew a
dedicated draft guidance with specific proposals, which
may illustrate the difficulties in establishing standards in
this area (U. S. Food and drug administration 2018). A first
caveat when applying statistical tests is the essential flexibil-
ity of the requirement of “high similarity” to allow for dif-
ferences if they are clinically meaningless. Statistics may
facilitate the detection of differences, e.g. in data distribu-
tions or ranges, but the determination whether or not these
differences are clinically relevant is a scientific question that
cannot be addressed by a statistical approach alone. This
article focuses on the meaningful detection of statistical dif-
ferences. In the event that differences are detected, the next
step in the evaluation of claims for comparability of a
manufacturing change or for biosimilarity, i.e. the deter-
mination of the clinical relevance of detected differences,
requires the assessment of all relevant product and process
knowledge, including structure-function relationships, un-
derstanding of the mode of action, safety data, and clinical
experience with the product.

A comparison of the different statistical approaches or
tests requires the calculation of the operating characteris-
tics based on a clear hypothesis for accepting a claim for
statistically equivalent quality. The concept of statistically
equivalent quality is the scientific basis behind existing reg-
ulations for manufacturing process changes as well as the
variability of quality attributes in routine production. This
article proposes such a hypothesis and a tool which allows
the calculation and comparison of the operating character-
istics such as the average false acceptance rate and average
false rejection rate. A false rejection means that a product
is rejected although it fulfills our hypothesis for equivalent
quality, whereas a false acceptance means that a product is
accepted although it does not fulfill our hypothesis. The
numbers for those error risks as calculated by the tool are
relative and not absolute because they depend on the
calculation parameters. However, they allow meaningful
comparisons of the different statistical tests with regards to
their utility in similarity exercises. For the purposes of
simplicity within this article, we use the terms statistical
approach and statistical test synonymously.

Materials and methods

Hypothesis for accepting a claim for statistical
equivalence for the analyzed quality attribute

The variability of the reference product defines the accept-
able quality for the test product population. Equivalence
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for the quality attribute is established if the population of
the test product lies within the population of the reference
product. The width of the population is described by 3¢
because 30 is commonly used as a threshold to describe a
population. E.g. In statistical process control data points
beyond 30 are investigated because they might result from
special cause variability and not belong to the population.

The population of the test product is therefore in the
population of the reference product if {iest — 30test > Hret
— 30yer aNd Hiest + 30¢est < Href + 30rer- In other words, and
assuming normal distributions, if at least the central
99.7% of the test product are within the central 99.7% of
the reference product. The equivalence region described
by this definition is illustrated as a triangle in Fig. 1.

The tool - calculation of the average false acceptance
rates and average false rejection rate

Acceptance rates, i.e. likelihood of passing the test, are
calculated by Monte Carlo methodology. Under the as-
sumption of normally distributed data, the reference
population and test population are distinguished by a
relative difference in mean (Uese-irer)/Orer and the ratio
of SD (standard deviation) Oy /0. For any given sam-
ple size for the reference product and test product, n,.¢
and N respectively, n,r and ne samples are drawn re-
peatedly (ng,, =1000) and randomly from the defined
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Fig. 1 Definition of the statistical equivalence region: The dark grey
region is the defined true similarity region and indicates those
combinations of SD ratio and difference in mean where the test
population is within the reference population. The population width
is described by p + 30, which translates into a triangle with the
corners of SD ratio and difference in means of (0/0, 1/0, 0/3). The
light grey region is the statistical non-equivalence (false similarity)
region indicating where the test population is not considered to be
within the reference population
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reference and test population and evaluated using the
statistical test (MinMax, 3Sigma, tolerance interval,
equivalence test for means) for acceptance. The accept-
ance rate is calculated by the proportion of accepted
samples to generated samples (ng,,). For any given sam-
ple size combination, acceptance rates can be calculated
systematically for all relevant combinations of the differ-
ence in means and the ratio of SD. In this article, accept-
ance rates were calculated for a grid covering all
combinations of the difference in means from 0 to 4 Ot
with a stepsize of 0.1 o,f and ratio of SD from 0 to 4
with a step size of 0.1.

Calculated acceptance rates can be visualized by plot-
ting the acceptance rate as a function of the difference
in means (Heest-Href)/Orer and the ratio of SD Oyest/0yer (se€
Additional file 1: Figure S1. for an example contour
plot).

Average false acceptance rates (false positive) are cal-
culated as an average of the acceptance rates for all grid
points in the statistical non-equivalence region, which
consequently represent false acceptance rates. Average
false rejection rates (false negative) are calculated as an
average of all rejection rates (1 — acceptance rates) for
all grid points in the statistical equivalence region.

The code for these calculations is provided in the
Additional file 1.

Statistical tests

a) MinMax: A MinMax range is defined by the lowest
and highest value of a sample. The MinMax test is
accepted if the MinMax range of the test sample is
within the MinMax range of the reference sample
(MinTeg > Minger and MaXreg; < MaXger)

b) 3Sigma: the 3Sigma range is calculated for the
reference sample as (Href30rep Hrer + 30rer)- The
3Sigma test is accepted if the MinMax range of the
test sample is within the 3Sigma range.

¢) Tolerance interval (TI): The tolerance interval is
calculated for the reference sample as (p-k*opeppt +
k*o,e). The k-factor is calculated two-sided with a
confidence level of 0.9 and a proportion of the
population covered by the tolerance interval of P =
0.99. The tolerance interval test is accepted if the
MinMax range of the test sample is within the
tolerance interval calculated for reference sample.

d) Equivalence testing of means (EQT): A two one-
sided t-tests’ (TOST) procedure is used to test for
equivalency of the means of the reference product
and the test product. The equivalence margin is
defined as 8 = 1.5 s,.¢ (standard deviation of the
reference product sample), the Type I error
probability is controlled at level a = 0.05 for a
conclusion of equivalence. The test is accepted if
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the (1-2a)100% = 90% confidence interval for the
difference in the means is within (-8, +9) .

Results
The operating characteristics of a statistical test depend
on the underlying hypothesis of statistical equivalence
for the quality attribute, which, for this article, is fulfilled
if the population of the test product lies within the
population of the reference product. This hypothesis re-
flects the current regulation of manufacturing processes,
which require that critical quality attributes are con-
trolled within ranges or limits. Under the assumption of
normally distributed populations, Fig. 1 illustrates the
resulting region of statistical equivalence for a test prod-
uct population which is distinguished from the reference
population by a difference in means and the ratio of the
distribution width (ratio of SD). The triangle illustrates
the equivalence region as the area where the conditions
for statistical equivalence as defined above are met.
Average false rejection and average false acceptance
rates were calculated for the different statistical tests as
described in the Methods section and displayed in Fig. 2
which provides a comparison of the statistical tests for
these error rates for sample size of n s and N = 10.
Figure 3 shows the impact of varying sample size for
MinMax, 3Sigma and Equivalence testing of means on
the average false acceptance and rejection rates. For
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Fig. 2 Average operating characteristics: The average operating
characteristics are shown for the tests MinMax, 3Sigma, equivalence
testing of means and tolerance interval for a sample size of nref=10
and ntest = 10. The horizontal axis represents the average false
acceptance rate and represents the risk for a statistical false positive
conclusion on similarity. The vertical axis represents the average false
rejection rate and represents the risk for a statistical false negative
conclusion on similarity
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Fig. 3 Sample size dependency of average operating characteristics:
The average operating characteristics are shown for different test
and reference product sample sizes (Nyef =4,6,8,..,30, Niest = 4,6,8,..30)
for the tests MinMax, 3Sigma and equivalence testing of means.
Arrows indicate the effect of increasing test product and reference
product sample size (annotated as Neq and Neef, respectively). The
grey background polygons accentuate the area of operating
characteristics for the individual tests
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Fig. 4 Sample size dependency of average operating characteristics
(Tolerance Interval): The average operating characteristics are shown
for different test and reference product sample sizes (Nef =4,6,8,...30,
Niest = 4,6,8,..30) for the test Tolerance Interval. Arrows indicate the
effect of increasing test product and reference product sample size
(annotated as Nies; and Ny, respectively). In contrast to Fig. 3, the x-
axis for the false acceptance rates is extended in order to visualize
all data points

MinMax, increasing n.s lowers the false rejection rate
without a large impact on false acceptance rate. Increas-
ing ns reduces false acceptance rates but slightly in-
creases false rejection rates. Similar trends with different
magnitudes are observed for 3Sigma, where increasing
n..r reduces false rejection rates but also slightly reduces
false acceptance rates. Increasing ng reduces strongly
false acceptance rates while it has only marginal impact
on the false rejection rate. While increasing sample sizes
reduce the false acceptance rate for MinMax and 3Sigma
as expected, they increase the likelihood for passing the
test, and associated false acceptance rates, for equiva-
lence testing of means. This effect is especially pro-
nounced with increasing test sample size. This different
behavior of equivalence testing can be attributed to
the lack of alignment of the equivalence test with the
proposed equivalence hypothesis requiring that the
population of the test product lie within the popula-
tion of the reference product. Range-based tests are
in general better aligned with this equivalence hy-
pothesis. Tolerance interval testing shows generally a
low false rejection rate but at small sample sizes there
is also a high false acceptance rate. However, increas-
ing sample sizes, especially for n, reduce the false
acceptance rate to levels comparable with the other
statistical tests (see Fig. 4).

Discussion

From a statistical viewpoint, without further know-
ledge of the impact of differences in quality attributes
on safety and efficacy and without taking into account
any risk mitigation by proper control strategy in
manufacturing, the average false acceptance and rejec-
tion rates represent estimates for false positive and
false negative decision of similarity between quality
attributes of two products. Both error rates are im-
portant and should be as low as possible, however, a
small false acceptance rate is even more desirable be-
cause it might impact risks posed to the patient,
whereas a false rejection rate primarily impacts the
risk for the manufacturer. The tool is therefore well
suited to compare different statistical tests for its ap-
plicability in similarity assessments. Any specific ap-
plication for a similarity exercise additionally requires
consideration of potential multiplicity effects as typic-
ally many quality attributes are compared in parallel
(Bretz et al. 2010). The tool also assumes normally
distributed data and process variability without special
cause variation, meaning that the analytical variability
is negligible and the sample data do not shift over
time. Non-normally distributed data and special cause
variation require additional considerations with regard
to sampling distributions and data evaluation.
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The results provided in this article reveal that MinMax
is a conservative approach with a low false acceptance
rate, but it has a high false rejection rate. Equivalence
testing has also a high false rejection rate and with in-
creasing sample size a considerable false acceptance rate.
The 3Sigma approach provides a more practical com-
promise of error rates, which further improves with lar-
ger sample size. Tolerance interval testing is only usable
if sample size is sufficiently large.

A frequent practical question in the evaluation of simi-
larity is on how many test samples are needed for robust
decision making. The tool shows nicely that very small
sample sizes can considerably increase the false accept-
ance rates for the range-based tests. The tool allows def-
inition of acceptable sample sizes based on desired
operating characteristics and/or to investigate alternative
strategies to control the false acceptance rate.

For the equivalence test, on the other hand, an in-
creasing sample size leads to greater precision in esti-
mating the mean difference. In combination with the
lack of alignment of the EQT with the equivalence hy-
pothesis (test population in a reference population), this
leads to an undesired increase of the false acceptance
rate with increasing sample size.

While the examples illustrate the impact of sample size,
the tool can also be used to assess the impact of other
statistical testing parameters on the false acceptance and
rejection rates. Finally, alternative hypotheses for statistical
equivalence of the quality attributes can be easily assessed.
For example, the equivalence area can be defined differ-
ently to allow a small difference in means when o is the
same on one side, but restrict the uncomfortable but also
highly unlikely situation that a very narrow distributed test
distribution is located in the far tail of the reference distri-
bution. Such a hypothesis could define equivalence of the
quality attribute if the central 95% if the test population
are within the central 99% of the reference population. —
see Additional file 1: Figure S2. For the operating charac-
teristics of such an alternate hypothesis please see
Additional file 1: Figure S3. (MinMax, 3Sigma, Equiva-
lence testing of means) and Fig. 4 (TT).

Conclusion

Regulatory guidelines for biosimilar evaluation and com-
parability of process manufacturing changes require highly
similar quality attributes between biosimilar candidate and
reference medicine, and pre- and post-change product re-
spectively (U. S. Food and Drug Administration Guidance
for Industry 2015; European Medicines Agency 2014; ICH
Harmonised tripartite guideline Q5E 2004). The definition
of “high similarity” of quality attributes includes a range of
variability. Even statistically significant differences could
be acceptable if sufficient knowledge allows the conclusion
that such differences are clinically meaningless. However,
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statistical approaches may facilitate the comparison of
quality attributes by identification of statistical differences,
which require further scientific evaluation before drawing
a conclusion on whether a claim of high similarity is ful-
filled or not. The tool presented in this article provides a
means to calculate relevant operating characteristics such
as error rates for average false acceptance (false positive)
and false rejection (false negative) rates of different statis-
tical approaches. Those properties allow a meaningful
comparison and proper selection of statistical tests and
may inspire research for novel statistical approaches for
comparing quality attributes.

Additional file

Additional file 1: Figure S1. Contour plot overlay of acceptance rates
for equivalence test (solid lines) and MinMax (dashed lines). Acceptance
rates are plotted as a function of the difference in means (utest-pref)/oref
on the horizontal axis and the ratio of SD ctest/cref. on the vertical axis.
Contour levels are equally spaced by 10% points and range from 10%
(light grey) to 90% (dark grey). The figure was generated with nsim =
10,000. Figure S2. Definition of an alternative statistical equivalence
region: The dark grey region is the true similarity region and indicates
those combinations of ratio of SD and difference in mean where the
central 95% of the test population are within the central 99% of the
reference population. This results in a triangle with the corners of SD
ratio and difference in means of (0/0, 1.32/0, 0/2.58). The light grey
region is the statistical non-equivalence (false similarity) region.

Figure S3. Sample size dependency of average operating characteristics
for the alternative equivalence hypothesis: The average operating
characteristics are shown for different test and reference product sample
sizes (nref =4,6,8,..,30, ntest =4,6,8,..30) for the tests MinMax, 3Sigma and
equivalence testing of means. The grey background polygons accentuate
the area of operating characteristics for the individual tests. Figure S4.
Sample size dependency of average operating characteristics for the
alternative equivalence hypothesis (Tolerance Interval): The average
operating characteristics are shown for different test and reference
product sample sizes (nref = 4,6,8,..,30, ntest = 4,6,8,..30) for the test
Tolerance Interval. In contrast to: Figure S3., the x-axis for the false
acceptance rates is extended in order to visualize all data points. R script
for the calculation of average false acceptance and average false rejection
rates. (DOCX 248 kb)
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