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Abstract 

Since the oncogenic rearranged during transfection (RET) gene fusion was discovered in non-small cell lung can-
cer (NSCLC) in 2012, multiple-targeted kinase inhibitors (MKIs) cabozantinib and vandetanib have been explored 
in the clinic for RET positive NSCLC patients. As the nonselective nature of these inhibitors, patients have off-target 
adverse effects. The discovery of highly potent selective RET inhibitors such as pralsetinib and selpercatinib improve 
the clinic efficiency and more favorable toxicity profile. However, acquired resistance mediated by secondary muta-
tions in the solvent-front region of the kinase (e.g. G810C/S/R) become a new challenge for selective RET inhibitor 
therapies. In this review, we highlight typical RET inhibitors developed during these years and provide a reference 
for more potential RET inhibitors exploration in the future.
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Introduction
Lung cancer is responsible for 11.6% of global cancer 
morbidity and 18.4% of global cancer mortality. It was 
the most common oncological disease and it was classi-
fied for non-small cell lung cancer (NSCLC) and small-
cell lung cancer (SCLC). NSCLC accounts for about 85% 
in lung cancer and is subdivided for squamous and non-
squamous histological types (Bray et al. 2018). The onco-
genic rearrange during transfection (RET) gene was first 
identified in 1985 (Takahashi et al. 1985) which encodes 
a receptor tyrosine kinase protein composed by1143 
amino acid residues. It was identified in approximately 
1–2% of NSCLCs in 2012 (Roberto et  al. 2017). Up to 

now, 48 unique fusion partners in RET have been identi-
fied (Lipson et al. 2012) and these fusions lead to ligand-
independent constitutive activation of the RET pathway 
which increased oncogenic signaling, resulting in RET 
gene overexpression.

Several multiple-targeted kinase inhibitors (MKIs) 
cabozantinib and vandetanib were approved for the treat-
ment of RET positive NSCLC patients (Drilon et al. 2018; 
Subbiah et  al. 2020). But the limited clinical benefits of 
these inhibitors prevent the application of these multiple-
targeted drugs (Drilon et  al. 2016; Lee et  al. 2017; Hida 
et al. 2019; Gupta-Abramson et al. 2008; Wells et al. 2012; 
Elisei et  al. 2013; Brose et  al. 2014). In 2020, US Food 
and Drug Administration (FDA) approved two selective 
RET inhibitors, selpercatinib and pralsetinib. However, 
acquired resistance conferred by secondary mutations 
were identified. Several other highly promising selective 
RET inhibitors were also developed in different stages 
of clinical investigation. In this review, we focus on the 
present state of the RET inhibitors in the treatment of 
NSCLC, discuss the future perspectives for RET positive 
NSCLC patients and provide an updated panorama of 
this topic.
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The structure and functions of RET
In 1985, Takahashi et  al. (1985) identified the pro-
tooncogene RET is a transforming gene located in the 
long arm of human chromosome 10. It was derived 
by DNA rearrangement during transfection of mouse 
NIH3T3 cells with human lymphoma DNA. The RET 
gene encodes a receptor tyrosine kinase (RTK) protein 
composed of 1143 transmembrane amino acid resi-
dues and consist of three regions, a large extracellular 
domain, a transmembrane domain and an intracellu-
lar tyrosine kinase domain. The RET protein formed 
by in-frame fusion of the 5’-terminus of a chaperone 
gene with the 3’-terminus of RET containing its kinase 
structural domain (Takahashi et al. 1988; Masahide and 
Geoffrey 1987). The extracellular domain contains four 
cadherin-like domains(CLD1-4), a calcium binding site 
that between CLD2 and CLD3, a cysteine-richdomain 
and a conserved cysteinerich domain (Fig.1). As the 
intracellular region contains a tyrosine kinase domain 
and tyrosine phosphorylation sites located next to the 
C terminal region. The G1063 diverge C-terminal tail 
into three major forms, which are a short 9-amino acid 
one (RET9), a 43-amino acid one (RET43) and a long 
51-amino acid one (RET51). These three isoforms share 

a largely common sequence and are coexpressed in 
many tissues.

The structure of the protein always decide the func-
tion of it. A lot of studies have clarified the function of 
RET and much has been uncovered its role in cancer. To 
date, three general mechanisms of aberrant RET activa-
tion have been reported. One of them is in-frame RET 
gene fusions (Takahashi et al. 1985), the other is targeted 
mutation of the RET gene itself (Mulligan et  al. 1993; 
Hofstra et al. 1994; Donis-Keller et al. 1993) and the third 
one is aberrant overexpression of the RET gene (Horibata 
et al. 2018; Mulligan 2018). The inappropriate activation 
of the tyrosine kinase is the common mechanism of these 
three. In consideration of the RET ligands, glial cell line 
derived neurotrophic factor (GDNF), neurturin, artemin 
and persephin, all belonging to the GDNF family (GFLs) 
(Arighi et al. 2005). These GFLs recruit RET for dimeri-
zation do not bind to RET directly but bind to GDNF 
family receptor-a (GFRa) coreceptors instead (Goodman 
et  al. 2014; Worby et  al. 1998; Amoresano et  al. 2005; 
Wang 2013). GFL/GFRα/RET ternary complex active 
the phosphorylation of the intracellular tyrosine residues 
and multiple downstream signaling,which include RAS/
MAPK, PI3K/AKT and JAK/STAT pathways to regu-
late cell migration, proliferation and differentiation in 

Fig.1 Structure of wild-type and rearranged RET proteins (Giuseppe et al. 2019)
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physiological conditions (Arighi et al. 2005; Mahato and 
Sidorova 2020) (Fig.2).

RET gain-of-function alterations have been identi-
fied in multiple solid tumours. More than 10,000 differ-
ent metastatic tumours were sequenced, RET alterations 
have been found in 2.4% of all cases, thyroid cancers and 
NSCLC are primarily found. It is worth to notice that, 
abnormal activation of RET mediated by mutation, over-
expression, or rearrangement with other oncogenic part-
ners are identified as driver forces in a variety of human 
malignancies (Subbiah and Cote 2020; Wang et al. 2019a; 
Castinetti et al. 2018).

RET fusions
The first RET fusion rearrangement among NSCLC 
patients was identified by Kohno and Lipson, which was 
reported in 2012 (Roberto et al. 2017). KIF5B-RET is the 
most frequent and the best characterized RET fusion. 
It was derived from a 10.6  Mb pericentric inversion on 
chromosome 10. CCDC6, NCOA4 and TRIM33 are also 
partner 5 genes for RET fusion in NSCLCs (Romei et al. 
2016). Until now, 48 unique fusion partners in RET have 
been identified and at least 12 fusion RET partner genes 
have been identified in NSCLCs (Lipson et al. 2012). RET 
fusions are thought to be oncogenic divers for two rea-
sons. One of the reasons is fusion provides a mechanism 
to express RET aberrantly in a cell type where it is nor-
mally transcriptionally silent. The extracellular domain 
replaced with a protein dimerization domain is the other 
reason (Arighi et  al. 2005). The outcome represent that 

the production of an intracellular RET tyrosine kinase 
domain can be ligand-independent activation (Fig.3).

The prevalence of RET fusion genes was 1.8% in the 
overall population. Also, Takeuchi et  al. examined 1529 
Japanese NSCLC patients, indicating that RET chromo-
somal rearrangement is 0.9% in those patients (Takeuchi 
et  al. 2012). In total, the prevalence of the RET fusion 
gene in lung adenocarcinoma is 0.9–1.8%. It is impor-
tant to found out that key regulatory mechanisms of 
RET inactivation, such as endocytosis and recruitment of 
membrane associated ubiquitin ligases, do not appear to 
have influence on the fusion proteins, but may enhance 
the oncogenicity (Kohno et  al. 2012; Richardson et  al. 
2009). Also, the mechanism of activation of RET fusion 
proteins is similar with the oncogenic activation of rear-
ranged ALK in NSCLC. In  vitro,the Ba/F3 (pro-B lym-
phocyte) (Roberto et  al. 2017) or NIH3T3 (fibroblast) 
cell lines (Hyndman et al. 2017; Suzuki et al. 2013), and 
CCDC6-RET-positive LC-2 lung adenocarcinoma cells 
demonstrated the tumorigenic potential of RET fusion 
proteins (Matsubara et  al. 2012; Planchard et  al.  2016). 
In  vivo, the athymic mice through subcutaneous injec-
tion of KIF5B-RET transfected NIH3T3 cells (Kohno 
et  al. 2012), and transgenic immunocompetent KIF5B-
RET-rearranged mice were also evaluated (Horibata et al. 
2018). To be noted, in vivo models, after tumour devel-
opment, continuous KIF5B–RET fusion gene expres-
sion was required for lung tumour survival in the latter. 
Furthermore, RET-rearranged lung adenocarcinoma in 
transgenic mice presented a strong desmoplastic reaction 
and aggressive features (Chau and Haddad 2013).

Fig. 2 GDNF signaling via the GDNF-GFRα1-RET complex (Kawai and Takahashi 2020)
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As RET was first identified more than several decades 
ago, which is activated in cancer mainly through chro-
mosomal rearrangements that generate fusion genes 
containing the kinase domain of RET, implying that RET 
addicted malignancies are sensitive to targeted inhibi-
tion. With the study of RET in NSCLC, clinical treat-
ments and inhibitors of it were gradually from bench to 
bedside, especially opening the door for small molecule 
inhibitors. We will discuss the MKIs, the selective inhibi-
tors and some other reported inhibitors as followed.

RET inhibitors
multiple‑targeted kinase inhibitors
Cabozantinib
The glimmer of hope for the patients with RET-rear-
ranged NSCLC came with the discovery of MKIs (Fig. 4). 
The first MKIs of RET we discuss hear is cabozantinib 
(1), which was approved by the US FDA in 2016. Cabo-
zantinib (XL-184), with the structure of N-(4-((6,7-
dimethoxyquinolin-4-yl)oxy)phenyl)-N-(4-fluorophenyl)
cyclopropane-1,1-dicarboxamide, was developed by 
Exelixis Inc. The drug has low nanomolar activity against 
RET (the  IC50 for RET is 5.2 nM), and it also has activ-
ity against ROS1, MET, VEGFR2, AXL, TIE2, and vkit 
Hardy-Zuckerman 4 feline sarcoma viral oncogene 
homologue (KIT) (Chau and Haddad 2013). Twenty-
six patients with advanced RET-rearranged NSCLC 
were evaluated the safety and activity of cabozantinib 
by Drilon et  al., which in an open-label, single-arm and 
phase II trial (Hida et  al. 2019). It was the first study 
of cabozantinib demonstrated the activity of a RET 

inhibitor in a molecularly enriched cohort of patients 
with advanced-stage, RET-rearranged NSCLC (Drilon 
et  al. 2013). In this trial, the primary objective over-
all response rate (ORR) was 28%, with 7 of 25 evaluable 
patients achieving a partial response, including patients 
with several other fusions. The median progression-free 
(mPFS) survival was 5.5 months and median overall sur-
vival was 9.9 months.

In this disease context, this trial was followed by two 
phase II trials of vandetanib, one conducted in Japan 
(LURET) (Planchard et  al.  2016) and the other one in 
South Korea (Gupta-Abramson et al. 2008), which will be 
discussed next. The common adverse reactions caused by 
cabozantinib include abdominal complex signs of diar-
rhea, cavity inflammation, palmar-plantar erythrodyses-
thesia syndrome (PPES), body mass reduction, appetite 
lethargy, nausea, fatigue, oral pain, hair color changed, 
taste disturbance, high blood pressure, abdominal pain 
and constipation (Sara et  al. 2016; Houvras and Wirth 
2011).

Vandetanib
Vandetanib (ZD6474) is a 4-anilinoquinazoline-like drug 
molecule, with the structure of N-(2,4-difluorophenyl)-
6-methoxy-7-((1-methylpiperidin-4-yl)methoxy) quina-
zoline-4 amine 2), which was developed by AstraZeneca 
(UK) and approved by the US FDA in 2011. Vandetanib 
is an orally active low-molecular multitargeted tyrosine 
kinase inhibitor with activity against EGFR, VEGFR-2 
and RET(the  IC50for RET is 100  nM) (Song 2015). Pre-
clinical studies demonstrated the antitumor activity of 

Fig. 3 RET fusion (Vivek et al. 2020; Wade and Christine 2018)
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vandetanib both in vitro and in vivo against LC-2/ad cells 
carrying the CCDC6-RET fusion (Wang et  al. 2019b). 
In Japan, the LURET phase II study, 19 Japanese RET 
fusion patients received the vandetanib treatment, the 
mPFS was 4.7 months, the median OS was 11.1 months, 
and the OS at 12  months was 52.6%. Eleven patients 
(57.9%) had adverse events leading to a dose reduction. 
In Korean, patients received the vandetanib treatment 
in another phase II study explored the efficacy of it with 
metastatic or recurrent RET fusion NSCLC. This result 
displayed the mPFS was 4.5 months, the median OS was 
11.6 months. The most common grade 3 adverse events 
(AEs) were hypertension (17%), a prolonged QTc interval 
(11%), and transaminitis (6%) (Wang et al. 2019b).

In the clinical trial of vandertanib for NSCLC described 
above, patients died most are caused by disease progres-
sion, but there are also side effects that cannot be toler-
ated discontinue the medication. Common side effects 
were diarrhea, rash, hypertension, and asymptomatic 
prolonged QT interval, nausea, vomiting, neutropenia, 
anemia, fatigue, etc. But most can be tolerated or can be 

relieved after symptomatic treatment. Also, the adverse 
reaction was higher of vandertanib combined application 
(Heymach et al. 2007; Heymach et al. 2008; Herbst et al. 
2010; Socinski et al. 2003).

Lenvatinib
Lenvatinib (E7080) with the structure of 4-(3-chloro-
4-(3-cyclopropylureido)phenoxy)-7-methoxyquinoline-
6-carboxamide (3) is a MKI of VEGFR1-3, fibroblast 
growth factor receptors (FGFR)1–4, platelet-derived 
growth factor receptor alpha (PDGFRα), KIT, and RET 
(the  IC50for RET is 1.5 nM) (Matsui et al. 2008a, b; Oka-
moto et al. 2013; Tohyama et al. 2014; Toyoaki et al. 2019; 
Horiike et  al. 2016). It was developed by Eisai Inc. and 
was approved by the US FDA in 2015 (Okamoto et  al. 
2013). In a phase II trial, 25 patients with RET-rearranged 
NSCLC was tested 24 mg a day. Among them, 13 patients 
(52%) had a KIF5B-RET rearrangement and 12 patients 
(48%) had different known RET fusion genes. Interest-
ingly, 7 patients (28%) of patients received lenvatinib after 
a previous line of anti-RET therapy. The ORR, disease 

Fig. 4 MKIs and RET-selective inhibitors in patients with RET-positive lung cancer
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control rates (DCR), and mPFS time were 16%, 76%, and 
7.3 months, respectively. In seven patients (28%) who had 
received RET therapy before, ORR with lenvatinib was 
superimposable (14%) on the response seen in RET TKI-
naive patients. The different known RET fusion genes 
has the equivalent (15%—17%) ORR in patients with the 
KIF5B-RET rearrangement, but the mPFS was lower in 
patients with the KIF5B-RET rearrangement (3.6 versus 
9.1 months). Lenvatinib induced grade 3 to 4 AEs in 92% 
of the patients (hypertension in 58% and proteinuria in 
16%); dose reduction and drug discontinuation occurred 
in 64% and 76% of patients, respectively. Lenvatinib 
has side effects like high blood pressure, diarrhea, and 
thrombocytopenia, also (Toyoaki et al. 2019).

Sorafenib
Sorafenib (BAY 43–9006) with the structure of 
4-(4-(3-(4-chloro-3-(trifluoromethyl)phenyl)ureido)
phenoxy)-N-methylpicolinamide (4), targets VEGFR1-3, 
platelet derived growth factor receptor beta (PDGFRB), 
c-KIT, fms-like tyrosine kinase 3 (FLT3), and also RET 
(the  IC50 for RET inhibition was 15–150 nM) (Heymach 
et al. 2007). It was developed by Bayer and was approved 
by the US FDA in 2005. In  vitro, sorafenib suppressed 
the growth of KIF5B-RET-transfected Ba/F3 pro-B lym-
phocytes and the efficacy of sorafenib has been tested in 
a limited number of patients (n= 3). One of these three 
patients displayed stable disease (SD) while two others 
showed progressive disease (PD) as best responses to 
treatment. However, the antitumor activity of sorafenib 
does not appear to be significant. The most common side 
effects were palmar metatarsal syndrome, hypertension, 
and diarrhea (Horiike et al. 2016).

In spite of MKIs are active in patients with RET-driven 
NSCLCs, response rates achieved in prospective series 
are lower than those observed in other driver-positive, 
advanced-stage tumours with matched targeted thera-
pies. One possible explanation for the limited efficacy of 
RET-directed therapy with MKIs relates to the inhibition 
of non-RET kinases, as well as non-kinase targets.

It has been validated that selectively inhibiting the 
kinase is a promising therapeutic strategy for patients 
harboring RET aberrations. Subsequently, two highly 
potent and selective RET TKIs, selpercatinib and pral-
setinib have been developed and their activity has been 
investigated, which will be discussed below.

Selective RET inhibitors
With the aim of overcoming treatment-related toxicities 
commonly seen with non-selective RET inhibitors, small 
and highly selective RET inhibitors have been developed. 

As a result, FDA approved selpercatinib and pralsetinib 
for the treatment of NSCLC harbouring RET alterations.

Selpercatinib
Selpercatinib (LOXO-292) with the structure of 
6-(2-hydroxy-2-methylpropoxy)-4-(6-(6-((6-meth-
oxypyridin-3-yl)methyl)-3,6-diazabicyclo[3.1.1]
heptan-3-yl)pyridin-3-yl)pyrazolo[1,5-a]pyridine-
3-carbonitrile(5) has been developed as a selective, 
ATP-competitive RET-inhibitor (the  IC50for RET is 
2.0 nM), which was developed by Lilly. Selpercatinib is 
a highly selective RET inhibitor because it could block 
the adenosine triphosphate binding site of RET recep-
tor tyrosine kinase (Drilon et al. 2020). Data on its pre-
clinical characterization and activity was published in 
2018 (Subbiah et  al. 2018b). On May 8th of 2020, the 
US FDA approved selpercatinib as the first targeted 
therapy for RET-rearranged NSCLC (Markham 2020).

Selpercatinib based on the ORR with prolonged duration 
of responses seen in a multicenter, open-label, multicohort 
clinical trial (LIBRETTO-001, NCT03157128)and the ben-
efit-risk evaluation of the results of LIBRETTO-001 was 
accelerated approved by the US FDA (Bradford et al. 2021). 
105 RET fusion-positive NSCLC patients previously treated 
with platinum chemotherapy and 39 treatment-naive were 
evaluated. ORRs for previously treated and treatment-naive 
patients were 64% and 85%, respectively. Also, patients with 
RET-mutant MTC were divided into two cohorts: one is 
previously treated with cabozantinib or vandetanib (N = 55) 
and the other is cabozantinib and vandetanib naive (N = 88). 
ORRs for the cohorts were 69% and 73%, respectively (Kim 
et al. 2021).

Selpercatinib was approved by the European Medi-
cines Agency (EMA) and Swiss-Medic for second line 
or posterior line therapy in 2021. LIBRETTO-321 was 
evaluated the efficacy of selpercatinib for Chinese RET 
fusion NSCLC patients and the ORR was 61.1%. This 
trail displayed that selpercatinib was a promising thera-
peutic option for Chinese RET fusion NSCLC patients. 
Central nervous system (CNS) progression on selper-
catinib were low in patients with RET fusion-positive 
lung cancers (Yonina et al. 2023).

Common side effects of selpercatinib included 
increased glutamic transaminase (AST) levels (51%), 
increased alanine aminotransferase (ALT) levels (45%), 
dry mouth (39%), diarrhea (37%), hypertension (35%) 
and rash (27%) (Subbiah et al. 2021a). The high cost of 
treatment is also an issue to consider, selpercatinib is 
priced at $20,600 per month, equivalent to 145,707 yuan 
per month, or about 1.748 million yuan per year. It is 
difficult for the average Chinese patients benefit from it.
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Pralsetinib
Pralsetinib (BLU-667) with the structure of (1s,4R)-N-
((S)-1-(6-(4-fluoro-1H-pyrazol-1-yl)pyridin-3-yl)ethyl)-
1-methoxy-4-(4-methyl-6-((5-methyl-1H-pyrazol-3-yl)
methyl)pyrimidin-2-yl)cyclohexane-1-carboxamide(6), 
is an oral tyrosine kinase inhibitors (TKI) with potent 
and specific activity against the RET kinase domain(the 
 IC50 for RET inhibition was 0.4  nM), including multi-
ple RET alterations such as fusions, activating point 
mutations and predicted acquired resistance muta-
tions, which was developed by Blueprint Medicines 
Corporation.

In vitro, pralsetinib is 8 to 28-fold more potent against 
the wild-type RET kinase domain compared with cabo-
zantinib and vandetanib. Besides, the clinical activity 
and safety of pralsetinib also display a strong activity 
against common oncogenic RET alterations, such as 
 RETM918T, KIF5B–RET and CCDC6–RET fusions (Sub-
biah et al. 2018a).

The ARROW study (Global multicentric single-arm 
phase I/II trial) investigated the clinical activity and 
safety of pralsetinib (Gainor et  al.  2021). Based on this 
study, pralsetinib was approved as first-line or post-line 
treatment for RET fusion NSCLC by the US FDA in 
2020 (FDA 2020; Wright 2020). The American Society 
of Clinical Oncology(ASCO) in 2021 showed that the 
ORR was 17.1 months, the CR was 6%, and the mPFS was 
16.5  months (n= 136) of pralsetinib. Nine patients with 
measurable brain metastases all showed an intracranial 
reduction to a certain extent (intracranial response rate 
(RR) 56%, intracranial complete remission (CR) 33%). As 
the significant efficacy and low off-target toxicity in RET 
cancer patients, pralsetinib was also approved by China’s 
State Food and Drug Administration (SFDA) in 2021 
for the first time (Sun and McCoach 2021; Horvath and 
Pircher 2021; Fu et al. 2021).

Considering the side effects, pralsetinib has been well 
tolerated with mainly low grade toxicities (28% had ≥ grade 
3 events). The most commonly observed side effects were 
AST and ALT increase (22% and 17%, respectively), hyper-
tension (18%), constipation (17%), neutropenia (15%) and 
fatigue (15%) (Gainor et al. 2019).

Other RET inhibitors in development
Except for selpercatinib and pralsetinib, BOS172738/
Zeteletinib (Phase I, NCT03780517) (Schoffski et  al. 
2021; Schoffski et  al. 2019), GSK3179106 (phase I, 
NCT02727283) (Eidam et  al. 2018), SY-5007 (phase I, 
NCT05278364), KL590586 (phase I/II, NCT05265091) 
and HS-10365 (phase I, NCT05207787), were also 
developed in different stages of clinical investigation. 
For example, BOS172738(7) is a targeted inhibitor of 
aberrant mutations in RET. The phase I clinical trial of 

BOS172738 showed good safety in long-term admin-
istration. The ORR of BOS172738 was 33% (n = 18/54)  
and the NSCLC cohort ORR was 33% (n= 10/30) (Lin et al. 
2020; Piotrowska et  al. 2018). Currently, multiple clini-
cal trials are being conducted, including LIBRETTO-431, 
LIBRETTO-531, NCT04211337, and NCT03780517 
(Suda and Mitsudomi 2020).

Moreover, several N-phenyl-7,8-dihydro-6H-pyrimido[5,4-
b][1,4]oxazin-4-amine derivatives have been reported as a new 
class of RET inhibitors. One of the representative compounds 
17d (8) (Yang et  al. 2018), with the structure of 1-(5-(tert-
butyl)isoxazol-3-yl)-3-(4-((6,7,8,9-tetrahydropyrimido[5,4-b]
[1,4]oxazepin-4-yl)amino)phenyl)urea, inhibits RET(the  IC50 
for RET is 10 nM) and its mutants  RETV804M and  RETV804L 
potently. Lakkaniga et  al. (2020)  investigated a series of 
derivatives based on pyrrolo[2,3-d]pyrimidine skeleton and 
one of the represent compounds 59(9) is a type II inhibitor  
of RET, which potently inhibits RET(the  IC50 for RET is 
6.8  nM) and  RETV804M (the  IC50 for RET is 13.5  nM).  
Moccia et  al. (2020)  identified the clinical drug candidates 
Pz-1(10) and NPA101.3(11), both with the  IC50 for RET 
less than 1.0  nM. Also, Pz-1(10) and NPA101.3(11) lacking 
the structural liability for demethylation exhibited a selec-
tive inhibitory profile for both VEGFR2 and RET (WT and 
V804M).

During the last decade, Wang et  al. (2019b) invested 
various nicotinamide analogs based on the scaffold of 
benzamide aminonaphthyridine. HSN356 was reported 
to inhibit RET kinase (Larocque et al. 2017). One of the 
nicotinamide analog of HSN356, HSN608(12) exerts 
strong RET inhibition and also inhibit  RETV804M/L and 
 RETS905F mutants better than sorafenib, and vandetanib, 
which was almost as same as pralsetinib. (Fig. 5).

RET inhibitors can discovered by virtual screening of 
natural product (NP) libraries. There are four NP librar-
ies encompassing Otava NP, NPASS (Natural Product 
Activity & Species Source) NP, IBS (InterBioScreen) NP, 
and LC (Life Chemicals). A 3D query as the model was 
employed to screen four NP libraries, including 102,829 
NPs in total. As a result 198 compounds were procured 
by subsequent virtual screening, which were subjected 
to computer-aided drug designing (CADD). Among 
these natural product candidates, STOCK1N-98911 and 
STOCK1N-84953 exhibited favorable activites against 
RET and another kinases (Solomon et al. 2020). Even the 
compounds did not have the activity as much as other 
inhibitors, but it shows another way to discovery new 
structure RET inhibitors.

Until now, selective RET kinases inhibitors received 
significant progress and promising clinical outcomes. 
However, acquired resistance conferred by secondary 
mutations, e.g. G810C/S/R in solvent-front region (SF), 
Y806 C/N (in hinge residue) or V738A (in β2 strand) 
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(Subbiah et al. 2021a; Solomon et al. 2020) were identi-
fied. As a result, substantial efforts have been devoted 
to discover new selective RET inhibitors for combat-
ing unsolved clinical needs (Zhang et  al. 2022b; Moc-
cia et  al. 2021) and 4 candidates have been advanced 
into clinical trials at least. Such as TPX-0046 (Phase I/II, 
NCT04161391) (Drilon et  al. 2019; Fancelli et  al. 2021), 
LOXO-260 (Phase I, NCT05241834) (Kolakowski et  al. 
2021), TAS0953/HM06 (phase I/II, NCT04683250) 
(Miyazaki et  al.  2017) and APS03118 with undisclosed 
structure which were based on the company’s announce-
ment (Subbiah et al. 2022) will be discussed next.

TPX-0046 is a small and rigid macrocyclic with the 
structure of (13E,14E,15aR,18aS,5S)-35-fluoro-5-methyl-
15,15a,16,17,18,18a-hexahydro-4-oxa-7-aza-1(5,3)-
cyclopenta[b]pyrazolo[1’,5’:1,2]pyrimido[4,5-e][1,4]
oxazina-3(1,2)-benzenacyclooctaphan-8-one(13). It 
is a different structure from current RET inhibitors, 
which is developed by Turning Point Therapeutics and 
it is a potent and selective next-generation orally bio-
available RET/SRC kinase inhibitor. TPX-0046 demon-
strated strong potency against many mutated RETs and 
WT, as well as SRC in enzymatic assays, which is except 
VEGFR2. In in-house engineered Ba/F3 KIF5B-RET, 
TT, and LC2/ad cells, TPX-0046 potently inhibited RET 
phosphorylation and cell proliferation with  IC50 of nearly 
1 nM.

TPX-0046 is also potent inhibit the Solvent Front 
Mutations (SFM) G810R in Ba/F3 cell proliferation 
assay with the  IC50 value is 17  nM, whereas compa-
rable molecules for pralsetinib and selpercatinib have 
 IC50 > 500  nM. In  vivo,TPX-0046 demonstrated marked 
anti-tumor efficacy in multiple RET-driven cancer cell-
derived and patient-derived xenograft tumor models 
(Moccia et al. 2021). The clinical trial (ClinicalTrials.gov 

Identifier: NCT04161391) employing TPX-0046 is on the 
way (Rebuzzi et al. 2021; Tan and Solomon 2020).

Ding’s group (Zhang et  al. 2022a), reported a serious of 
1-methyl-3-((4-(quinolin-4-yloxy)phenyl)amino)-
1H-pyrazole-4-carboxamide derivatives. The representa-
tive compounds 8q(14), strongly inhibit the wild-type RET 
kinase and the  IC50 value is 13.7  nM. It is also potently 
suppressed the proliferation of BaF3 cells which sta-
bly expressing various oncogenic fusions of RET kinase 
with solvent-front mutations, such as CCDC6-RETG810C, 
CCDC6-RETG810R,  KIF5BRETG810C and KIF5B-RETG810R, 
the  IC50 values are 15.4, 53.2, 54.2 and 120.0 nM, respec-
tively. In Ba/F3-CCDC6-RETG810C/R cells, it dose-depend-
ently inhibited the activation of RET and downstream 
signals and obviously triggered apoptosis. The compound 
8q (14) also exhibited significant anti-tumor efficacy with 
a tumor growth inhibition (TGI) value of 66.9% at 30 mg/
kg/day via i.p. in a Ba/F3-CCDC6-RETG810C xenograft 
mouse model.

HM06(vepafestinib, 15) (Isao et  al. 2023)  with the  
structure 4-amino-N-(4-(methoxymethyl)phenyl)-7-(1- 
methylcyclopropyl)-6-(3-morpholinoprop-1-yn-1-yl)-7H-
pyrrolo[2,3-d]pyrimidine-5-carboxamide, was developed 
by Helsinn group and potently inhibited recombinant 
 RETWT,  RETV804 and solvent front (G810) kinase, 
the  IC50 value of  RETWT is 0.33 ± 0.01  nM. It is more 
selective than selpercatinib, pralsetinib and TPX-0046. 
Consistent with in  vitro data, HM06 showed superior 
efficacy in tumor allografts derived from Ba/F3 cells 
expressing  RETWT or  RETG810R fusion proteins. It also 
increased the CNS availability and represented a pos-
sible effective strategy to overcome the emergence of 
acquired resistance to first-generation RET-selective 
inhibitors (Fig. 6).

Fig. 5 Chemical structures of several other selective RET inhibitors
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However, other compounds like LOXO-260 (Phase 
I, NCT05241834) (Subbiah et  al. 2022)  and APS03118 
which is filed by Investigation New Drug (IND) haven’t 
shown any clinical data now. The only thing about 
APS03118 is the  IC50for mutant RET inhibition was less 
than 0.4 nM which is based on the company’s announce-
ment, but the structure of it was undisclosed (Tan and 
Solomon 2020).

However, no drug is approved for overcoming acquired 
resistance against the selective RET inhibitor therapies 
until now. As mentioned, some mutations occured in 
RET-positivite NSCLCs, we will discuss next.

RET mutations
RET mutation was an in-traget kinase-acquired resist-
ance. It dynamically evolves under kinase inhibitor selec-
tion pressure, making the kinase continuously activated 
under medication conditions. Gatekeeper mutations 
and solvent-front mutations were included. It has been 
reported that resistance mechanisms in MKIs include 
 RETV804M gatekeeper mutations and  RETS904F(Larocque 
et  al. 2017). The primary V804M/L/E and S904F muta-
tions of RET positive NSCLS patients formed steric 
clashes with the drugs because the mutations are in 
the kinase gatekeeper and activation loop, respectively 
(Román-Gil et  al. 2022; Liu et  al. 2018; Nakaoku et  al. 
2018).

Recent studies have demonstrated that  RETV804M/Lpro-
vides a gatekeeper function in oncogenic RET fusions, 
limiting efficacy of other MKIs such as cabozantinib (Liu 
et al. 2018) at the same time. For this reason, the selec-
tive RET inhibitors have been screened and designed for 
activity against gatekeeper mutations.

The selective RET inhibitor selpercatinib and pralsetinib 
induced a mutation (G810A/S) (Yoda et al. 2018), which 

demonstrated it’s increased kinase activity and conferred 
resistance through allosteric effects. As a result, selective 
RET inhibitors have been designed to overcome gate-
keeper mutations. The concurrent  RETV804M gatekeeper 
mutation was associated with a G810 resolute mutation in 
one NSCLC patient.

In addition, RET mutations located at the floor of the 
solvent-front (G810C/S/R), the hinge (Y806C/N), and the 
β2 strand (V738A) of the RET ATP-binding site (Yang 
et al. 2018) targeted-by pass mechanisms (Subbiah et al. 
2021b; Rosen et  al. 2021). The G810C/S/R mutations 
displayed the strongest resistance (Drilon et  al. 2020) 
and were observed more often in patients whose tumors 
developed resistance to selpercatinib. The identification 
of selpercatinib-resistant RET mutations were cross-
resistant to pralsetinib (Kim et  al. 2021). Interestingly, 
Wu’s group identified that the  RETL730V/I mutations at 
the roof of the solvent-front site of the RET kinase were 
strongly resistant to pralsetinib but not to selpercatinib 
(Shen et al. 2021).

Conclusions and perspectives
In the last two decades, RET mutations and rearrange-
ments represent a well-established mechanism that drive 
tumor growth across several types of neoplasms, includ-
ing NSCLCs. Treatment with non-specific MKIs in RET 
fusion-positive NSCLC achieved modest clinical out-
comes and limited response. Then, as pralsetinib and 
selpercatinib, the two highly selective RET inhibitors, 
were specifically developed to target RET kinase selectiv-
ity and to combat resistances to MKIs. But the emergence 
of off-target RET-independent mechanisms of resistance 
to pralsetinib and selpercatinib have highlighted the nec-
essary to exploit further next-generation compounds and 
to explore new therapeutic strategies, including concur-
rent inhibition of RET and parallel signaling pathways of 

Fig. 6 Several RET inhibitors suppressing resistant mutants in solvent-front regions
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resistance. What’s more, the treatment of two selective 
RET inhibitors costs are high. Within the next decade, 
the RET inhibition in NSCLC is on the verge of a break-
through that will give physicians and patients promising 
new therapeutic options. Identifying potent, selective, 
and less toxic RET target agents, looking for compounds 
with RET activity from natural products, exploring the 
potential impact of different fusion variants, character-
izing concomitant molecular alterations and mechanisms 
of resistance to RET inhibition to identify optimal thera-
peutic combinations represent the challenges for future 
research in this field of NSCLC treatment.
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