
Kunzelmann et al. AAPS Open            (2024) 10:7  
https://doi.org/10.1186/s41120-024-00095-y

RESEARCH Open Access

© The Author(s) 2024. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://creativecommons.org/licenses/by/4.0/.

AAPS Open

An in‑silico approach towards multivariate 
acceptable ranges in biopharmaceutical 
manufacturing
Marco Kunzelmann1*†, Judith Thoma1*†, Sabrina Laibacher1, Joey M. Studts1, Beate Presser1 and Julia Spitz1 

Abstract 

Multivariate interactions between process parameters can heavily impact product quality and process performance 
in biopharmaceutical manufacturing processes. Thus, multivariate interactions should be identified and appropriately 
controlled. This article describes an in-silico approach to establish multivariate acceptable ranges; these ranges help 
to illustrate the combined impact of multiple input variables on product quality and process performance. Addition-
ally, this article includes a case study for a monoclonal antibody polishing application.

Proven acceptable ranges are set by changing only one input parameter at a time while keeping all others constant 
to understand the impact of process variability on product quality or process performance, but the impact of syn-
ergistic variables are not evaluated. Within multivariate acceptable ranges, any combination of input parameters 
of a unit operation yields the desired product quality and process performance. The layered approach applied in this 
article is based on risk assessment and statistical models to leverage prior knowledge and existing data. The risk 
assessment is specific for a manufacturing facility but is applicable to multiple products manufactured in the same 
facility. No additional wet-lab experiments are required for building the statistical models when development 
and process characterization are executed using a design of experiments approach, compared to a univariate evalua-
tion of data. The established multivariate acceptable range justifies revised normal operating ranges to ensure process 
control. Further, the determination of multivariate acceptable ranges adds to overall process knowledge, ultimately 
supporting the implementation of a more effective control strategy.

Keywords Biopharmaceuticals, Control strategy, Multivariate interactions, In-silico calculation, Process 
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Introduction
Various institutions, such as the International Council 
for Harmonization (ICH) and the United States Food and 
Drug Administration (FDA), have published guidance for 

development and validation of pharmaceutical processes. 
Further, regulatory agencies, pharmaceutical industry 
and academia collaborate to improve clarity and common 
understanding. Such working groups are another source 
for conceptual guidance (Glodek et  al. n.d). Published 
papers describe key concepts and authority expectations 
for regulatory submissions. For instance, ICH Q8 (R2) 
introduces the Quality by Design (QbD) concept (Guide-
line and Q8 (R2) Pharmaceutical Development. n.d). 
QbD is a systematic approach to development and man-
ufacture of biopharmaceuticals (Yu et  al. 2014). Process 
design and understanding are integral parts of the QbD 
concept. To this end, process characterization studies are 
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conducted in late-stage process development. Process 
characterization studies aim to ensure process robustness 
and process control by investigating the impact of previ-
ously identified relevant process inputs on process out-
puts. Relevant process inputs include potentially critical 
or key process parameters, whereas process outputs are 
critical quality attributes and process performance indi-
cators (Mitra and Murthy 2022). In this context, proven 
acceptable ranges (PARs) are defined. According to the 
ICH definition of the PARs (Guideline and Q8 (R2) Phar-
maceutical Development. n.d; Patil and Pethe 2013), this 
is a characterized range of a process parameter meeting 
acceptable product quality and process performance, 
while all other process parameters are held constant. 
Deliberate changes of one input parameter are possi-
ble within PARs. In contrast, authorities expect normal 
operating ranges (NORs) to represent only the uncon-
trollable manufacturing variability, rather than introduc-
ing manufacturing flexibility (Questions and Answers: 
Improving the Understanding of NORs, PARs, DSp and 
Normal Variability of Process Parameters. n.d). Addi-
tional flexibility in the manufacturing conditions requires 
justification by means of a design space. A design space, 
as defined in (ICH guideline Q8(R2), assures quality 
for a multidimensional combination of process inputs 
(Guideline and Q8 (R2) Pharmaceutical Development. 
n.d). The design space can be filed in regulatory submis-
sions. Within an approved design space, manufacturers 
can adapt the operating space of the commercial pro-
cess (Cooney et al. n.d). Such alterations of the commer-
cial operating space do not require authority review or 
approval. Design spaces may apply to one unit operation 
or a complete process. If no such mitigation is in place, 
process input settings should be controlled at target 
operating conditions/within tight NORs.

ICH and regulatory bodies have shared the concept of a 
design space for more than a decade. The FDA’s guidance 
for industry paper “Process Validation: General Princi-
ples and Practices” recommends design of experiment 
(DoE) studies to investigate multivariate interactions 
(Services, U.S.D, n.d). According to the FDA’s guidance 
document, understanding multivariate interactions is rel-
evant process knowledge to ensure effective process con-
trol. The PAR does not sufficiently support multivariate 
scenarios; potential multivariate interactions of parame-
ter excursions are generally not considered for the defini-
tion of PARs. This is because PARs are established based 
on univariate analysis. Despite the limitations associated 
to PARs, manufacturers seem to adopt multivariate con-
cepts rather hesitantly. Horst et al. investigated the imple-
mentation of QbD in EU marketing applications between 
2014 and 2019 (Horst, J.P. 2021). Only around one third 
of all dossier submissions uses full QbD application and 

only around 22 % of these submissions are biotechnol-
ogy-derived products.

The hesitant use of multivariate data evaluation is not 
specifically related to the biopharmaceutical industry. 
Looking at other industries, such as the service indus-
try, chemical industry and the automotive industry in 
the 2000’s, most statistical evaluation methods in quality 
engineering practice were univariate (Yang and Trewn 
2004; Yang n.d). In the meantime, these industries have 
adopted statistical tools for multivariate data analysis. 
Applications focus on data-driven fault detection and 
diagnosis (Qin 2012). Recent advancement in artificial 
intelligence may further support this trend. Biegel et  al. 
use deep learning to enhance multivariate process con-
trol approaches for reconstruction of errors in a sheet 
metal forming process (Biegel et al. 2022).

In biopharmaceutical processes, the multivariate 
analysis aims to establish an allowable parameter range, 
reproducibly yielding product with acceptable qual-
ity and process performance. Many articles assert that 
an established design space can improve process qual-
ity and flexibility, but the number of publications spe-
cifically describing an application methodology in the 
biopharmaceutical industry is limited (Lee et  al. 2022). 
This could be due to the required effort and complexity. 
If the number of relevant process inputs is high, exten-
sive wet-lab experiments need to be conducted to char-
acterize multivariate interactions and to establish a 
design space. Statistical models aim to reduce the num-
ber of wet-lab experiments that are required to investi-
gate a given multi-parameter space (Politis et  al. 2017; 
Kontoravdi et  al. 2013; Madenius and Brunding 2008). 
Nevertheless, establishing a design space yielding accept-
able product quality and yield may require iterative DoE 
studies (Horvath et al. 2010). Abu-Absi et al. establish a 
design space for a cell culture process (Abu-Absi et  al. 
2010). In an extensive study comprising several DoEs, 
the authors investigate how the identified worst-case cell 
culture conditions extend to product quality in purified 
mAb pools. Jiang et al. establish a design space for a pre-
parative hydrophobic interaction chromatography step 
(Jiang et  al. 2010). Contour plots describe correlations 
of two process inputs, while other process inputs are set 
at their worst levels. Finally, the design space is defined 
from a combination of the plots, each correlating 2 pro-
cess inputs. As the number of process inputs increases, 
this exercise becomes more complex. Nagashima et  al. 
enhance statistically derived contour plots with Monte 
Carlo simulations (Nagashima et al. 2013). The presented 
case evaluates four input parameters and four responses 
in a cell culture process. Amadeo et al. evaluate multivari-
ate interactions in the purification process of biopharma-
ceuticals. Similar to previously referenced publications, 
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correlations of two process inputs are investigated. How-
ever, the described strategy systematically identifies the 
design space (Amadeo et al. 2014). In several evaluation 
rounds occurring in parallel, interactions are evaluated 
between every combination of two process inputs. This 
procedure is repeated for every process output. All pro-
cess outputs are assigned a relative importance. Finally, a 
desirability function selects the most suitable parameter 
setting. This optimization strategy involves mutual inter-
actions between two process inputs. Further, desirability 
functions return optimal process conditions rather than 
an allowable parameter space. For this reason, confirma-
tion of a suggested multivariate parameter space can be 
useful. In general, the number of process inputs affects 
computational complexity. At some point, alternatives 
to commonly applied response-surface models become 
attractive. Huang et al. suggest the complimentary utili-
zation of principal component analysis and partial least 
squares (Huang et  al. 2009) to reduce dimensions. This 
methodology enables evaluation of multivariate interac-
tions between many process inputs.

Application examples for multivariate analysis extend 
to the definition of multivariate acceptable ranges (MAR) 
(Horvath et al. 2010; Wurth et al. 2016).

In this study, the MAR is defined as a parameter range 
that yields acceptable product quality and process per-
formance, while other relevant process parameters can 
be held at any setting within their corresponding MARs. 
According to this definition, the MAR is a control ele-
ment comprised of process inputs. This includes process 
parameters and material attributes. MARs are established 
unit operation-wise. Ideally, the MAR equals the PAR. In 
this case, all combinations of input parameter settings 

within PAR yield acceptable product quality and process 
performance. In any case, the MAR needs to support the 
NOR to ensure robust manufacturing at normal operat-
ing conditions. Further, the MAR could also justify NORs 
wider than the uncontrollable manufacturing variability 
observed in the limited data sets normally available at 
Investigational New Drug Application and or Biologics 
License Applications submissions. However, the MAR as 
defined in this study is not intended for regulatory filing.

The herein described approach is based on DoE 
and statistical models (e.g. linear mixed models). This 
approach may be used with other model types. Infact, 
it can be used for every model type in which the critical 
quality attributes can be described by the process param-
eters. The approach leverages prior knowledge to reduce 
computational complexity. All process inputs previously 
identified as potentially critical or key in a general failure 
mode and effects analysis are again assessed with regard 
to potential multivariate interactions.

Materials and methods
The MAR assessment comprised three major parts. As 
a first step, relevant process inputs were identified. The 
identification of relevant process parameters utilized 
a risk assessment approach. Details of this process are 
described below in the “Parameter selection”. The rel-
evant process parameters were included in an in-silico 
calculation of MARs. For the applied methodology, see 
section “In-silico calculation”. The calculated MARs were 
then compared to the NORs. If MARs were tighter than 
the NORs, mitigations were put in place to ensure appro-
priate process control. Fig. 1 provides a high-level over-
view of the approach.

Fig. 1 MAR establishment approach. The three different steps are summarized in the grey, blue and green boxes
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The approach was applied to a purification process for 
a monoclonal antibody (mAb). The purification process 
included 3-column chromatography and several filtration 
unit operations. The mAb was captured using Protein A 
affinity chromatography. Polishing steps were based on 
cation and anion exchange chromatography. In general, 
the approach could also be applied to other process steps 
in biopharmaceutical manufacturing.

Parameter selection
The process inputs included in the MAR evaluation were 
selected based on a risk assessment. Only relevant mul-
tivariate scenarios were considered in the in-silico cal-
culation. This focus on relevant multivariate scenarios 
reduced complexity and saved computational capacity.

Appropriate justification to exclude or include process 
inputs in the MAR evaluation was based on three crite-
ria: read-outs from large-scale runs; the probability of 
excursions off target; and the potential to interact with 
other process parameters. The process parameters were 
assigned relevant or non-relevant with regards to multi-
variate interactions. Relevant process parameters were 
included in the in-silico calculation. Non-relevant pro-
cess parameters were set to their target setting for further 
evaluation. Table 1 lists the included process parameters 
of the elution phase from a cation exchange step for a 

mAb. The table provides justification and the outcome of 
the risk assessment.

As described in Table  1, elution buffer pH, elution 
buffer conductivity and loading density were assigned 
relevant for multivariate interactions. Peak collection 
criteria and the residence time were not relevant for the 
evaluation of MARs. Peak collection start and stop are 
governed by the automation software. As soon as the 
UV signal exceeds the pre-defined limit, the software 
switches the valve position. Hence, accuracy of this pro-
cess parameter is ensured. Similarly, flow rates are hard-
coded in the automation system. Unless unexpected 
overpressure events occur, flow rates are operated at tar-
get conditions. Potential overpressure events could result 
from resin fines or precipitates that block the column 
frits or detoriate the column packing. Based on platform 
experience with the resin and column packing, overpres-
sure events are highly unlikely. Read-outs of the opera-
tional variability (data not included) further confirmed 
the provided rationales.

The applied risk assessment reduced the number of 
relevant input parameters for the evaluation of MARs. 
The further evaluation included the capturing step, acid 
treatment, the other polishing step and the formulation 
unit operation. As an outcome of the risk assessment, a 
maximum of 5 process parameters was evaluated per 
unit operation.

Table 1 Risk assessment for relevant process parameters of the elution phase from a mAb polishing step

Process Parameter Mitigation Relevant for 
multivariate 
interactions

Peak collection criteria Peak collection is governed by automation. Peak collection starts/stops as soon as the criterion 
is reached. No variation, only neglectable variation due to rounding of read-out, e.g. peak col-
lection start criterion is 0.2 OD and read-out is 0.21.

no

Elution buffer pH Buffer pH is determined through the addition of buffer components. The range of add-
ing buffer components is tight and well-controlled. Buffer pH is controlled through off-line 
measurements. However, buffer pH is not titrated to target. Any buffer meeting the specified 
pH range is used in the process. Buffer pH is well-known to interact with buffer conductivity 
in cation exchange chromatography.

yes

Elution buffer conductivity [mS/cm] Buffer conductivity is determined through the addition of buffer components. The range 
of adding buffer components is tight and well controlled. Buffer conductivity is controlled 
through off-line measurements. However, buffer conductivity is not titrated to target. Any 
buffer meeting the specified conductivity range is used in the process. Buffer conductivity 
is well-known to interact with buffer pH in cation exchange chromatography.

yes

Residence time Residence times are a result of flow rates and column dimensions. Residence times are 
normally operated at target. Flow rates are hardcoded in the automation system and will be 
adjusted for any column re-pack.
Higher residence times resulting from over-pressure regulation are highly unlikely at the given 
particle size and with pre-purified pools.
Shorter residence time than target will not be used in the process.

no

Loading density Column loading is mainly determined by process design, scale (dimension of column, dimen-
sion of bioreactor) and previous unit operations. Higher/lower titer or higher/lower volume 
can lead to changes in column loading.
Conductivity and pH are expected to affect resin capacity and selectivity. Potential effects may 
occur.

yes
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Major parts of the risk assessment were generic. These 
data could be used again for other products that are pro-
cessed with the same platform and facility, which contrib-
uted to the efficiency and sustainability of this approach. 
Process parameters that were assigned relevant with 
regards to multivariate interactions were included in the 
in-silico calculation of MARs.

Linear mixed model
While the risk assessment is applicable to the manufac-
turing facility and the mAb platform process, building of 
statistical models is dedicated to a specific molecule. The 
statistical models were constructed using the Ordinary 
Least Squares method considering all process parameter 
main effects, two and three factor interactions and quad-
ratic effects. Data from multiple fermentation batches 
were used and possible differences were considered as 
fixed block effects. The statistical model for each critical 
quality attribute can be described as followed:

where
Y is the observed output parameter (e.g. critical quality 

attribute)
β0 is the model intercept
βi is the  ith main effect
βij is the  ijth two factor interaction effect
βijk is the  ijkth three factor interaction effect
βii is the  iith quadratic effect
δi is the  ith block effect
x is the input parameter setting of the  ith,  jth or  kth 

parameter
si is the  ith block setting
p is the number of investigated input parameters
b is the number of fixed block effects
ε is the residual error term, assuming ε ∼ N 0, σ 2

ε

If at least one block was significant, all blocking effects 
were included in the model and transformed to random 
effects by using a linear mixed model. Changing the 
equation to a linear mixed model resulted in the follow-
ing equation:

where
u was the random block term, assuming u ∼ N

(

0, σ 2
u

)
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The equation showed that the fixed block effect term 
∑b−1

i=1 δisi was substituted by the random term u. This 
term described the random batch-to-batch variability 
assuming a normal distribution with mean zero and vari-
ance σ 2

u.

In‑silico calculation
The in-silico calculation of MARs used the established 
statistical regression models (i.e. linear mixed models) 
to define PARs. A linear mixed model was built for each 
relevant critical quality attribute and yield. Linear mixed 
models are able to combine global and group-level trends 
with fixed (i.e. investigated input parameters) and ran-
dom effects (i.e. batch-to-batch variability) (Oberleitner 
et al. 2023). Linear mixed models converged to ordinary 
least square models in the absence of random effects. In 
this case, no batch-to-batch variability could be observed. 
Statistical uncertainty intervals were applied to take this 
variability into account so that predictions for future 
batches could be made. The statistical models for process 

characterization studies were built with DoE data from 
process characterization experiments and scale-down 
experiments. Scale-down qualification experiments were 
run with settings close to target; this enabled integration 
of scale-down qualification data into the statistical mod-
els for definition of PARs. The integration of scale-down 
data made it possible to investigate the impact of batch-
to-batch variability.

Based on the statistical models, predictions for relevant 
critical quality attributes and yield were made. The linear 
mixed models returned, for instance, mAb aggregate pre-
dictions for any given input parameter set and space that 
was included. The model-based predictions were com-
pared against target ranges. Target ranges were deduced 
from large scale data; an arithmetic mean ± 3 standard 
deviation range was calculated based on large scale runs. 
These target ranges were applied as acceptance criteria 
for the process outputs, including critical quality attrib-
utes and yield. The same target ranges applied for estab-
lishment of the PARs and for the MARs.

During in-silico calculations, non-relevant process 
inputs were set to their corresponding target value. 
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Process inputs relevant for MARs were evaluated at dif-
ferent settings. A uniform distribution of process inputs 
was assumed. The evaluation was performed in parallel 
for the different critical quality attributes and yield. The 
technical realization of the MARs was conducted accord-
ing to the following protocol:

• Discretize the screening range per input parameter 
into n equidistant grid points (grid size n). The input 
parameter calibration tolerance can be used to find a 
good estimation for n. (Fig. 2a and b)

• Consider presence of quadratic effects and locate 
extreme values of the statistical model (i.e. ver-
tex of the parabola). In case extrema are located 
between two grid points: add the extrema as addi-
tional points to the grid for the respective param-
eter (Fig. 2c)

• Build the Cartesian product of all discretized input 
parameter ranges. The Cartesian product represents 
all possible combinations of input parameter settings 
within the design space (with grid size n).

• Calculate the prediction of the statistical model with 
the corresponding model uncertainty interval for 
each grid point in the design space.

• Set the grid point to true, if the uncertainty interval 
of the linear model is within the target range. Other-
wise set the grid point to false (Fig. 2d)

• Determine all possible orthotopes (i.e. with values 
true) that include the target conditions (see section 
Geometric Exemplification, Fig. 4)

• Normalize orthotopes to the screening range and 
sort according to their volume.

• Perform the calculation for every relevant critical 
quality attribute and process performance parameter.

Fig. 2 Simplified example for the individual steps of the technical MAR realization for two input parameters. a The screening range is discretized 
into equidistant grids. b Grid points with the input parameter settings for the model predictions are added. c To consider the presence of quadratic 
effects, additional grid points were added at the vertex of the parabola. d) Classification if the model prediction with uncertainty interval falls 
at the corresponding grid point location within the target range
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Geometric exemplification
Figure 3 shows an example for the greatest possible space 
for yield. For simplicity, the graphic example involves 
only two process inputs. Based on the contour plot of the 
model and the acceptance criteria for yield, the largest 
possible space had a circular geometry. The actual in-sil-
ico calculation involved all previously identified param-
eters relevant for MARs.

The herein described approach did not investigate 
or describe the geometric shape of the largest possible 
space within which no critical multivariate interactions 
occur. Instead, ranges were established for each rel-
evant process parameter or material attribute. For con-
sideration of 2 process parameters, the MAR resulted 
in a rectangle. Figure 4 illustrates the different possible 
rectangles for the given example from Figs. 2 and 3. For 
3 process parameters, a rectangular cuboid was estab-
lished. For consideration of more than 3 = N process 
parameters, the cuboid turned into a N-orthotope.

MARs equaled the PAR if no multivariate interactions 
were observed. If multivariate interactions were pre-
sent within the PAR of one or several process inputs, the 
MAR was tighter than the PAR. MARs tighter than PARs 
could occur for one or more process parameter. Usually, 
several different cuboids or orthotopes were possible. For 
instance, a tighter MAR for process parameter 2 allowed 
more flexibility for process parameter 3; meanwhile the 
MAR for process parameter 1 remained unchanged. 
Another combination, i.e. cuboid, allowed for more flexi-
bility for process parameter 2, while the MAR for process 

parameter 3 was tightened. Figure  4 illustrates different 
possible rectangles for a set of 2 process inputs.

Results and discussion
The statistical models for the cation exchange chroma-
tography step described the dependency of 7 process 
outputs based on the settings of 10 process inputs. The 
process inputs were parameters from the loading, equi-
libration, and elution phase of the cation exchange chro-
matography step for an example mAb. Within this paper, 
the establishment of a MAR for the elution phase is 
described. The model was built based on a DoE approach. 
The DoE comprises center point experiments, and exper-
iments that are conducted at deflected process input set-
tings. The high number of investigated parameters led to 
52 wet-lab experiments. Additional wet-lab experiments, 
investigating all potential multivariate interactions at 
their corresponding minimum and maximum level, 
were hardly practicable. Such additional wet-lab experi-
ments would need to represent all possible combinations 
of parameter excursions; summed  210  =  1024 wet-lab 
experiments.

The in-silico-based calculation resulted in a large list 
of possible orthotopes per process output, which were 
sorted by the volume. The methodology was applied to all 
critical quality attributes of the mAb and step yield. Pro-
cess input settings, which favored high step yield, led to 
higher aggregate levels in the product pool of the cation 
exchange step.

Fig. 3 Schematic drawing of the largest possible space between two process inputs. The contour plot for yield a) intersected the acceptance 
criteria for yield, represented by the yellow surface in b). The herein described approach did not investigate or describe the geometric shape 
of the largest possible space within which no critical multivariate interactions occur. Instead, ranges were established for each relevant process 
parameter or material attribute. For consideration of 2 process parameters, the MAR resulted in a rectangle. Figure 4 illustrates the different possible 
rectangles for the given example from Figs. 2 and 3. For 3 process parameters, a rectangular cuboid was established. For consideration of more 
than 3 = N process parameters, the cuboid turned into a N-orthotope
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The impact of multivariate interactions was more 
complex with regard to the level acidic mAb variants. 
Tables 2, 3, 4 show results for aggregates, acidic mAb var-
iants and step yield.

The screening range (SR) is listed in the first row. The 
10 largest cuboids were sorted according to their volume. 
Volumes were normalized to the screening range. Pro-
cess input settings highlighted in red indicate MARs that 
are tighter than the screening range.

For the presented unit operation, the resulting cuboids 
were smaller than the screening range. For mAb aggre-
gates, volumes of the 10 largest MARs ranged from 44 
– 52 % of the screened parameter space. Especially, the 

upper end of the tested parameters led to critical multi-
variate interactions. At least 2 of the 3 parameters had 
to be tightened at their upper end. The MAR was tighter 
than the PARs.

The possible MARs for acidic mAb variants were com-
paratively small with respect to volume. Allowable vol-
umes comprised approximately 2 % of the screened space. 
Thus, multivariate interactions had a greater impact on 
acidic mAb variants compared to the impact on mAb 
aggregates. All input parameters had to be restricted on 
each end of the screening range. The allowable ranges for 
elution buffer pH and elution buffer conductivity were 
centered around the mid-point of the screening range. 

Fig. 4 Schematic representation of different rectangles within the largest possible space in green a). The red rectangle b) has the largest range 
for elution pH. The blue rectangle c) has the largest surface area and shows the best compromise in terms of ranges between elution buffer 
conductivity and pH. The yellow rectangle d) allows a comparatively wide range for the elution buffer conductivity in combination with a tighter 
range for the elution buffer pH. For graphical simplicity, the example involves only two process inputs
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In contrast, the allowable ranges for the loading density 
were in the upper part of the screening range, i.e. higher 
than 40 g/L. Compared to the PARs, the MARs for the 
elution buffer conductivity and the loading density had to 
be tightened.

The identified cuboids for yield ranged from 3 – 7 % 
of the screened volume. The lower end of the process 
parameter was found critical to multivariate interactions. 
This applied to all the 10 largest possible cuboids. Elution 
buffer pH, elution buffer conductivity and the loading 

Table 2 Cuboids for aggregates. The selected cuboid is highlighted by a double-lined, green frame

Table 3 Cuboids for acidic mAb variants. The selected cuboid is highlighted by the double-lined, green frame
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density had to be restricted at their lower end, compared 
to the screening range. Cuboids 2 – 9 were also restricted 
at the upper end of at least one process parameter. Espe-
cially low loading densities were found to be critical with 
regard to multivariate interactions. The lowest allowable 
loading density was 56.45 g/L.

The observed multivariate interactions were attrib-
uted to the known impact of salt ions and pH in cation 
exchange chromatography. The results of the (MAR) 
evaluation agreed (generally) with the theory of cation 
exchange chromatography (Staby et al. 2006; Rounds and 
Regnier n.d; Kopaciewicz and M.A., R., Fausnaugh, J., al., 
n.d; Brooks and Cramer 1992).

Numerous publications investigate the adsorption and 
desorption of proteins to a charged stationary phase. One 
of the most straight-forward models is the stoichiometric 
displacement of the adsorbed protein by salt ions (Rounds 
and Regnier n.d; Kopaciewicz and M.A., R., Fausnaugh, 
J., et al., n.d). The pH in the liquid phase affects protein 
charge. Proteins have a negative net charge below their 
isoelectric point. This net charge decreases with increas-
ing pH. Hence, displacement requires fewer salt ion at 
higher pH, provided cation exchange chromatography 
is operated below the isoelectric point of the protein. 
The steric mass action model is more detailed; the steric 
mass action model considers several steric effects, such 
as the multi-point adsorption of proteins to the station-
ary phase. Steric effects lead to local ion concentrations 
in the close environment of adsorbed proteins (Brooks 

and Cramer 1992). The protein charge and local ion con-
centrations influence protein adsorption and desorption 
equilibrium. Further, steric effects affect the maximum 
available resin capacity. Thus, load capacities depend on 
the salt concentration, pH, shape and size of a protein.

The MAR evaluation in this case study revealed mul-
tivariate interactions between elution buffer conductiv-
ity, elution buffer pH and loading densities. High elution 
buffer pH, high elution buffer conductivity and high 
loading densities were beneficial to achieve a high yield, 
where conductivity is a measure for the salt concentra-
tion. These findings agreed with the general theory of 
cation exchange chromatography. High pH decreases 
the net charge of the protein and high conductivity sup-
ports displacement. High loadings further support pro-
tein desorption and lead to a relative decrease of protein 
that remains adsorbed to the resin, also due to unspecific 
interactions.

However, high elution buffer pH, high elution buffer 
conductivity and high loading densities induced multi-
variate interactions that were critical with regard to mAb 
aggregate removal. The product pool contained relatively 
higher amounts of mAb aggregates. The amount of mAb 
aggregates exceeded the applied acceptance criteria. 
The observed multivariate interactions enhanced mAb 
aggregate desorption. In turn, the resolution decreased 
between mAb monomers and mAb aggregates.

Multivariate interactions between elution buffer con-
ductivity and the elution buffer pH were critical with 

Table 4 Cuboids for step yield. The selected cuboid is highlighted by a double-lined, green frame
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regard to acidic mAb variants. The allowable ranges for 
the loading density were similar to the PAR. The compar-
atively small allowable cuboids for acidic mAb variants 
and step yields were due to strong multivariate interac-
tions in the cation exchange unit operation. The acidic 
mAb variants were determined as a relative measure. 
Low elution buffer pH and low conductivity decreased 
recovery of basic species. This effect was enhanced by 
low load densities. The relative share of acidic mAb spe-
cies increases. Similarly, high elution buffer pH and high 
elution buffer conductivity led to an increasing level of 
basic species. High load densities added to this effect. 
Consequently, acidic mAb species were below the applied 
acceptance criteria.

The observed impact of multivariate interactions on 
yield and the level of acidic mAb species could extend 
to other mAbs, as well. The principles of ion exchange 
apply to proteins, in general. The observed effect for mAb 
aggregate purity were more complex. Aggregates are not 
necessarily more basic, compared to monomers. Net 
charge of aggregates can differ from one mAb to another. 
Thus, observed effects can be different for other mAbs.

The herein presented approach returned orthotopes, 
i.e. an allowable rectangular volume. These allowable 
volumes were conservative, rectangular approximations 
of the true allowable parameter space. Yet, the applied 
grid enabled in-silico calculations to be conducted within 
few hours. On the other hand, the rectangular constraint 
might drastically reduce the returned allowable param-
eter space compared to the true allowable parameter 
space.

Review of operating ranges
The in-silico evaluation returned MARs for all process 
outputs of the mAb polishing step. The resulting MARs 
were smaller than the established PARs. A discussion 
between development, process transfer, and manu-
facturing was initiated. The discussion addressed the 
observed variance of several factors: process parameter 
read-outs in large-scale runs; process parameter gov-
ernance; and manufacturing variability demands. As 
per the process layout, particular process parameters 
required higher variability than others. For instance, 
high operational variability was found for the chro-
matography column load densities. The column load 

capacities depended on the harvest titer, the yield of 
unit operations upstream, the column volume, and the 
cycling strategy. Thus, variability for the loading density 
was prioritized over variability for elution buffer pH 
and conductivity. To this end, cuboid 7 was selected for 
acidic mAb variants (see Table 3).

The selection procedure was repeated for each criti-
cal quality attribute and yield. For the given example, 
cuboid 1 was selected for yield (see Table 4), based on 
the volume. Cuboid 4 was selected for aggregates (see 
Table 2). This cuboid was a trade-off between tighten-
ing the ranges for elution buffer pH and elution buffer 
conductivity. The selected cuboids were combined 
to one MAR. In some cases, the cuboid selection was 
reviewed. This re-evaluation aimed to achieve the larg-
est overlap between the cuboids. The MAR for a pro-
cess parameter was established based on the tightest 
range among all selected cuboids. Table 5 summarizes 
the MAR for the herein discussed mAb polishing step.

The in-silico calculated MARs were compared again 
to operational variability. The MAR for the elution 
buffer pH was tighter than the desired operational 
range. Thus, eight wet-lab experiments were con-
ducted. The experiments aimed to confirm the desired 
multivariate range: elution buffer pH 5.45 – 5.55; elu-
tion buffer conductivity 12.0 – 13.0 mS/cm; and load-
ing density 40 – 58 g/L. Table  6 summarizes the 
experimental parameter settings and Fig.  5 shows the 
results. The wet-lab experiments were performed using 
a qualified scale-down model.

The wet-lab results verified the results from the 
in-silico calculation of MARs, also demonstrat-
ing the appropriateness of the approach. If load-
ing density, elution buffer pH and conductivity were 
set to their upper end, mAb aggregates exceeded the 
applied acceptance criteria. Similarly, setting the 
process parameters to the lower end led to exceed-
ing the acceptance criteria for the acidic mAb variant 
level. Process-wise, appropriate measures had to be 
applied. These measures ensured that product qual-
ity was consistently met. The NORs were revised. If 
the pH of the elution buffer exceeded pH 5.52, con-
ductivity of the elution buffer had to be below 12.70 
mS/cm. The established NORs were set based on the 
MARs and confirmed by wet-lab experiments yielding 

Table 5 Combined MAR for all considered CQAs and yield. The lower limit for yield was not considered for the overall MAR

Process Parameter Aggregates [%] Acidic variants [%] Step yield [%] Combined MAR

Elution buffer pH 5.40 – 5.54 5.49 – 5.52 5.49 – 5.59 5.49 – 5.52
Elution buffer conductivity [mS/cm] 11.50 -12.83 12.39 – 12.83 12.39 – 13.50 12.39 – 12.83
Load density g protein/L resin [mg/mL] 22.99 – 61.22 42.11 – 61.22 56.45 – 66.00 42.11 – 61.22
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acceptable product quality. This guaranteed that mul-
tivariate interactions would not affect future manufac-
turing runs.

Establishing the MARs for the given mAb polishing, 
required eight additional wet-lab experiments. The in-
silico data was used to design the wet-lab experiments. 
If no preliminary data was available for the experi-
mental design, the number of wet-lab experiments will 
likely be higher. For the given mAb downstream pro-
cess, MARs were also established for the capture step, 
acid treatment and the first polishing column (data not 
shown). These unit operations did not require confir-
mation of MARs in the wet lab.

Process knowledge and control
The evaluation of MARs provided in-depth understand-
ing of multivariate interactions among process inputs. 
The MAR increased process knowledge and supported 
process control. For most of the investigated process 
inputs, multivariate interactions were non-critical. The 
established MARs were equal to the PARs or at least 
wider than the NORs. If MARs were tighter than the 
NORs, another round of in-silico calculations was con-
ducted. This second round of in-silico calculations used 
a smaller grid size. The first round of in-silico calculations 
used at least 10 equidistant grid points. The resulting cal-
culated MARs were conservative ranges. The application 
of a higher resolution grid size increased the MARs. Nat-
urally, it also increased the computational effort. Finally, 
a good balance was established between process variabil-
ity requirements and the computational complexity. If 
the established MARs remained tighter than the normal 
operation ranges, mitigations were put in place.

Mitigations included the adaptation of NORs, addi-
tion of further controls or the confirmation of multivari-
ate parameter excursions in the wet lab. As the wet-lab 
data confirmed the multivariate interactions determined 
in-silico, NORs were adapted. Potential opportunities 
to adapt NORs included redevelopment of the affected 
process step, improved calibration tolerances of the 
pH and conductivity probes, or a change of equipment. 
Further, allowable loading densities could be tightened, 

Table 6 Parameter settings for the MAR verification wet-lab 
experiments

No. Exp Elution buffer 
conductivity [mS/cm]

Elution buffer 
[pH]

Load 
density 
[g/L]

1 12.4 5.48 58

2 12.0 5.45 40

3 12.3 5.45 40

4 13.0 5.55 58

5 12.7 5.54 58

6 12.0 5.46 40

7 13.0 5.46 58

8 12.5 5.50 58

Fig. 5 Schematic drawing of the MAR confirmation experiments. The blue cuboid represents the investigated design space of the confirmation 
experiments. Red stars indicate experiment with conditions leading to product quality data outside the acceptance criteria. Green stars represent 
experiments with conditions leading to acceptable product quality. Numbers indicate experiment numbers
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which was considered the least preferred option regard-
ing manufacturing flexibility. In the presented case study, 
a what-if condition was introduced. This what-if- condi-
tion applied to the elution buffer pH and conductivity. If 
the elution buffer exceeded a defined pH limit within the 
NOR, the conductivity had to be below a defined limit. 
This additional control of process inputs ensured product 
quality was met despite the observed multivariate inter-
actions. Mitigations implemented upon the assessment 
of MARs varied on a case-by-case basis. In any case, the 
MAR delivered a criterion to assign process inputs that 
are subject to critical multivariate interactions.

The MAR as a measure for multivariate interactions 
was further considered for the criticality assessment of 
process parameters and material attributes. This added 
substantial value to process robustness in manufacturing 
scale. For the given example, the revised NORs for elu-
tion buffer pH and elution buffer conductivity ensured 
process control. The adapted NORs prevent multivariate 
interactions that could cause inconsistent product qual-
ity. Both process parameters were classified as critical 
material attributes. The identification of process inputs 
prone to critical multivariate interactions led to sig-
nificantly increased process understanding and a much 
stronger control strategy. On the other hand, the data 
driven approach justified deprioritization of criticality of 
several other process parameters.

Conclusions
Although the concept of a design space has been laid 
out in ICH Q8 (R2) for almost 15 years, the interpreta-
tion of the regulatory expectation remains challenging. 
Instead of regulatory relief, applicants have experi-
enced complete application rejection and other con-
sequences. Currently, speed to market impacts many 
decisions in late-stage development. Additionally, both 
resources and time for process characterization are 
limited. Therefore, an intermediate approach to defin-
ing MARs, instead of claiming a full QbD design space, 
is of high interest as the applicant files only PARs and 
NORs. Additionally, the MAR, which is established 
from small-scale experiments conducted for scale-
down model qualification, and definition of PARs, sup-
ports manufacturing flexibility within NORs. Data is 
augmented with prior platform knowledge at manu-
facturing scale. The available DoE data considers 3-way 
interactions that were not reflected in NORs and PARs 
as established in the past. Thus, the MAR fully explores 
the DoE data according to the intended purpose of 
the DoE methodology. The evaluation of MARs was 
conducted in-silico. Any input parameter setting was 
treated equally possible, which allowed for prediction 

about whether a combination of process input settings 
would lead to meeting the applied acceptance criteria 
for product quality and process performance.

Based on the extended process knowledge, the sci-
entific risk assessment of parameter changes could be 
enhanced. The MAR was tighter than the PAR for several 
process parameters, indicating a relevant impact of mul-
tivariate interactions. This additional process knowledge 
was applied for an improved process control. Further, 
the process knowledge obtained from the evaluation of 
MARs supports the identification of established condi-
tions according to ICH Q12 (Guideline and Q12 on Tech-
nical and Regulatory Considerations for Pharmaceutical 
Product Lifecycle Management. n.d) and categorization 
of post-approval chemistry, manufacturing, and control 
changes.
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