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Abstract

Design of experiments (DOE)-based analytical quality by design (AQbD) method evaluation, development, and

validation is gaining momentum and has the potential to create robust chromatographic methods through deeper
understanding and control of variability. In this paper, a case study is used to explore the pros, cons, and pitfalls of
using various chromatographic responses as modeling targets during a DOE-based AQbD approach. The case study
involves evaluation of a reverse phase gradient HPLC method by a modified circumscribed central composite (CCC)

response surface DOE.

original method and is thus more robust.

optimization

Solid models were produced for most responses and their validation was assessed with graphical and numeric
statistics as well as chromatographic mechanistic understanding. The five most relevant responses with valid
models were selected for multiple responses method optimization and the final optimized method was chosen
based on the Method Operable Design Region (MODR). The final method has a much larger MODR than the

This study showcases how to use AQbD to gain deep method understanding and make informed decisions on
method suitability. Discoveries and discussions in this case study may contribute to continuous improvement of
AQDbD chromatography practices in the pharmaceutical industry.
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Introduction

Drug development using a quality by design (QbD) ap-
proach is an essential part of the Pharmaceutical cGMP
Initiative for the twenty-first century (FDA Pharmaceut-
ical cGMPs For The 21st Century — A Risk-Based Ap-
proach. 2004) established by the FDA. This initiative
seeks to address unmet patient needs, unsustainable rise
of healthcare costs, and the reluctance to adopt new
technology in pharmaceutical development and manu-
facturing. These issues were the result of old regulations
that are very rigid and made continuous improvement of

* Correspondence: yongzhi.dong@thermofisher.com
Thermo Fisher Scientific Inc., Durham, NC, USA

@ Springer Open

previously approved drugs both challenging and costly.
The International Council for Harmonization of Tech-
nical Requirements for Pharmaceuticals for Human Use
(ICH) embraced this initiative and began issuing QbD
relevant quality guidelines in 2005. The final versions of
ICH Q8-Q12 [(ICH Q8 (R2) 2009) (ICH Q9 2005) (ICH
Q10 2008) (ICH Q11 2012) (ICH Q12 2019)] have been
adopted by all ICH members. The in-progress version of
ICH Q14 (ICH Q14 2018) will offer AQbD guidelines
for analytical procedures and promote the use of QbD
principles to achieve a greater understanding and con-
trol of testing methods and reduction of result
variability.

© The Author(s). 2021 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if

changes were made. The images or other third party material in this article are included in the article's Creative Commons
licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons
licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.


http://crossmark.crossref.org/dialog/?doi=10.1186/s41120-021-00037-y&domain=pdf
http://orcid.org/0000-0003-4268-5952
http://creativecommons.org/licenses/by/4.0/
mailto:yongzhi.dong@thermofisher.com

Dong et al. AAPS Open (2021) 7:3

Product development using a QbD approach empha-
sizes understanding of product and process variability, as
well as control of process variability. It relies on analyt-
ical methods to measure, understand, and control the
critical quality attributes (CQA) of raw materials and in-
termediates to optimize critical process parameters and
realize the Quality Target Product Profile (ICH Q8 (R2)
2009). Nevertheless, part of the variability reported by
an analytical test can originate from the variability of the
analytical measurement itself. This can be seen from Eq.
1.

2 2 2
0 reported = O product =+ 0" measurement (1)

The reported variability is the sum of intrinsic product
variability and extrinsic analytical measurement variabil-
ity (NIST/SEMATECH e-Handbook of statistical
methods 2012a, 2012b, 2012¢, 2012d). The measurement
variability can be minimized by applying QbD principles,
concepts, and tools during method development to as-
sure the quality and reliability of the analytical method
can meet the target measurement uncertainty (TMU)
(EURACHEM/CITAC 2015). High-quality analytical
data truthfully reveal product CQAs and thus enables
robust, informed decisions regarding drug development,
manufacturing, and quality control.

ICH Q14 introduces the AQbD concepts, using a ra-
tional, systematic, and holistic approach to build quality
into analytical methods. The Method Operable Design
Region (MODR) (Borman et al. 2007) is a multidimen-
sional space based on the critical method parameters
and settings that provide suitable method performance.
This approach begins with a predefined analytical target
profile (ATP) (Schweitzer et al. 2010), which defines the
method’s intended purpose and commands analytical
technique selection and all other method development
activities. This involves understanding of the method
and control of the method variability based on sound
science and risk management. It is generally agreed
upon that systematic AQbD method development
should include the following six consecutive steps (Tang
2011):

ATP determination

Analytical technique selection

Method risk assessment

MODR establishment

Method control strategy

Continuous method improvement through a life
cycle approach

S

A multivariate MODR allows freedom to make
method changes and maintain the method validation
(Chatterjee S 2012). Changing method conditions within
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an approved MODR does not impact the results and of-
fers an advantage for continuous improvement without
submission of supplemental regulatory documentation.
Establishment of the MODR is facilitated by multivariate
design of experiments (DOE) (Volta e Sousa et al. 2021).
Typically, three types of DOE may be involved in AQbD.
The screening DOE further consolidates the potential
critical method parameters determined from the risk as-
sessment. The optimization DOE builds mathematical
models and selects the appropriate critical method par-
ameter settings to reach to the target mean responses.
Finally, the robustness DOE further narrows down the
critical method parameter settings to establish the
MODR, within which the target mean responses are
consistently realized. Based on this AQbD framework, it
is very clear DOE models are essential to understanding
and controlling method variability to build robustness
into analytical methods. Although there have been ex-
tensive case studies published regarding AQbD (Gran-
geia et al. 2020), systematic and in-depth discussion of
the fundamental AQbD modeling is still largely unex-
plored. Methodical evaluation of the pros, cons, and pit-
falls of using various chromatographic responses as
modeling targets is even more rare (Debrus et al. 2013)
(Orlandini et al. 2013) (Bezerraa et al. 2019). The pur-
pose of this case study is to investigate relevant topics
such as data analysis and modeling principles, statistical
and scientific validation of DOE models, method robust-
ness evaluation and optimization by Monte Carlo simu-
lation (Chatterjee S 2012), multiple responses method
optimization (Leardi 2009), and MODR establishment.
Discoveries and discussions in this case study may con-
tribute to continuous improvement of chromatographic
AQDbD practices in the pharmaceutical industry.

Methods/experimental
Materials and methods
C111229929-C, a third-generation novel synthetic
tetracycline-class antibiotic currently under phase 1 clin-
ical trial was provided by KBP Biosciences. A reverse
phase HPLC purity and impurities method was also pro-
vided for evaluation and optimization using AQbD. The
method was developed using a one factor at a time
(OFAT) approach and used a Waters XBridge C18 col-
umn (4.6 x 150 mm, 3.5 pm) and a UV detector. Mobile
phase A was composed of ammonium acetate/ethylene-
diaminetetraacetic acid (EDTA) buffer at pH 8.8 and
mobile phase B was composed of 70:30 (v/v) aceto-
nitrile/EDTA buffer at pH 8.5. Existing data from forced
degradation and 24-month stability studies demon-
strated that the method was capable of separating all six
specified impurities/degradants with > 1.5 resolution.

A 1.0 mg/mL C111229929-C solution was prepared by
dissolving the aged C111229929-C stability sample into
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10 mM HCI in methanol and used as the method evalu-
ation sample. An agilent 1290 UPLC equipped with a
DAD detector was used. In-house 18.2 MQ Milli-Q
Water was used for solution preparations. All other re-
agents were of ACS equivalent or higher grade. Waters
Empower® 3 was used as the Chromatographic Data Sys-
tem. Fusion QbD v 9.9.0 software was used for DOE de-
sign, data analysis, modeling, Monte Carlo simulation,
multiple responses mean, and robustness optimization.
Empower® 3 and Fusion QbD were fully integrated and
validated.

A method risk assessment was performed through re-
view of the literature and existing validation and stability
data to establish priorities for method inputs and re-
sponses. Based on the risk assessment, four method pa-
rameters with the highest risk priority numbers were
selected as critical method parameters. Method evalu-
ation and optimization was performed by a modified cir-
cumscribed central composite (CCC) response surface
DOE design with five levels per parameter, for a total of
30 runs. The modifications were the extra duplicate rep-
lications at three factorial points. In addition to triplicate
replications at the center point, the modified design had
a total of nine replicates. See Table 1 for the detailed de-
sign matrix. A full quadratic model for the four-factor
five-level CCC design has a total of fourteen potential
terms. They include four main linear terms (A, B, C, D),
four quadratic terms (A2, B2, C2, D?), and six two-way
interaction terms (A*B, A*C, A*D, B*C, B*D, and C*D).

Pre-runs executed at selected star (extreme) points
verified that all expected analytes eluted within the 35
min run time. This mitigated the risk of any non-eluting
peaks during the full DOE study, as a single unusable
run may raise questions regarding the validity of the en-
tire study. Based on the pre-runs, the concentration of
the stock EDTA solution was decreased four-fold to
mitigate inaccurate in-line mixing of mobile phase B
caused by low volumes of a high concentration stock.
The final ranges and levels for each of the four selected
method parameters are also listed in Table 1.

Each unique DOE run in Table 1 is a different method.
As there were 25 unique running conditions, there were
25 different methods in this DOE study. The G-
Efficiency and the average predicted variance (NIST/
SEMATECH e-Handbook of statistical methods 2012a,
2012b, 2012¢, 2012d) (Myers and Montgomery 1995) of
the design were 86.8% and 10.6%, respectively, meeting
their respective design goals of > 50% and < 25%. Some
of the major advantages of this modified CCC design in-
clude the following:

e Established quadratic effects
e Robust models that minimize effects of potential
missing data
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e Good coverage of the design space by including the
interior design points

e Low predictive variances of the design points

e Low model term coefficient estimation errors

The design also allows for implementation of a se-
quential approach, where trials from previously con-
ducted factorial experiments can be augmented to form
the CCC design. When there is little understanding
about the method and critical method parameters, such
as when developing a new method from scratch, direct
application of an optimizing CCC design is generally not
recommended. However, there was sufficient previous
knowledge regarding this specific method, justifying the
direct approach.

DOE data analysis and modeling principles

DOE software is one of the most important tools to fa-
cilitate efficient and effective AQbD chromatographic
method development, validation, and transfer. Fusion
QbD software was employed for DOE design and data
analysis. Mathematical modeling of the physicochemical
chromatographic separation process is essential for DOE
to develop robust chromatographic methods through
three phases: chemistry screening, mean optimization,
and robustness optimization. The primary method pa-
rameters affecting separation (e.g., column packing, mo-
bile phase pH, mobile phase organic modifier) are
statistically determined with models during chemistry
screening. The secondary method parameters affecting
separation (e.g., column temperature, flow rate, gradient
slope settings) are optimized during mean optimization
using models to identify the method most capable of
reaching all selected method response goals on average.
During robustness optimization, robustness models for
selected method responses are created with Monte Carlo
simulation and used to further optimize method param-
eters such that all method responses consistently reach
their goals, as reflected by a process capability value of >
1.33, which is the established standard for a robust
process (NIST/SEMATECH e-Handbook of statistical
methods 2012a, 2012b, 2012c¢, 2012d).

Models are critical to the AQbD approach and must
be validated both statistically and scientifically. Statistical
validation is performed using various statistical tests
such as residual randomness and normality (NIST/
SEMATECH e-Handbook of statistical methods 2012a,
2012b, 2012c¢, 2012d), regression R-squared, adjusted re-
gression R-squared, and prediction R-squared. Scientific
validation is achieved by checking the terms in a statis-
tical model against the relevant established scientific
principles, which is described as mechanistic under-
standing in the relevant literature (ICH Q8 (R2) 2009).
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Table 1 The experimental matrix of the modified CCC design
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Run No. (A) Pump flow rate (B) Final strong (C) Oven (D) EDTA additive Predicted response
(mL/min) solvent (%) temperature (°C) concentration (mM) variance (%)
1° 09 350 26.0 0.50 16.67
2° 0.8 330 280 045 10.80
3P 1.0 330 280 045 10.87
4° 08 370 280 045 10.87
50 1.0 370 280 045 16.67
6° 0.8 330 280 0.55 16.85
7° 1.0 330 280 0.55 17.02
8P 08 370 280 055 17.02
9 1.0 370 280 0.55 17.21
10¢ 0.8 330 280 045 10.80
1 1.0 330 280 045 10.87
12¢ 0.8 370 280 045 10.87
137 0.7 350 300 0.50 16.91
147 1.1 350 30.0 0.50 17.14
15° 09 31.0 30.0 0.50 1691
167 09 390 300 0.50 17.14
17° 09 350 30.0 040 16.67
18° 09 350 30.0 0.60 1741
19° 09 350 300 0.50 10.00
20° 0.9 350 30.0 0.50 10.00
21° 09 350 30.0 0.50 10.00
22° 0.8 330 320 045 16.85
23° 1.0 330 320 045 17.02
24P 0.8 370 320 045 17.02
25° 10 370 320 045 1721
26° 0.8 330 320 0.55 17.32
27° 1.0 330 320 0.55 16.16
28° 0.8 370 320 0.55 16.16
29° 10 370 320 055 16.16
30° 09 350 340 0.50 1741
Parameter 0.7-1.1 33-37 26-34 04-0.6
ranges

Each run is labeled with the type of design point: °, star points; b factorial points; , triplicate replications at the center point (the nominal conditions); and ¢,
model robustness points by run 10, 11, and 12, which are the duplicate replications of the factorial points by run 2, 3, and 4, respectively

Fusion uses data transformation analysis to decide
whether data transformation is necessary before model-
ing, and then uses analysis of variance (ANOVA) and re-
gression to generate method response models. ANOVA
provides objective and statistical rationale for each con-
secutive modeling decision. Model residual plots are
fundamental tools for validating the final method re-
sponse models. When a model fits the DOE data well,
the response residuals should be distributed randomly
without any defined structure, and normally. A valid
method response model provides the deepest

understanding of how a method response, such as reso-
lution, is affected by critical method parameters.

Since Fusion relies on models for chemistry screening,
mean optimization, and robustness optimization, it is
critical to holistically evaluate each method response
model from all relevant model regression statistics to as-
sure model validity before multiple method response
optimization. Inappropriate models will lead to poor
prediction and non-robust methods. This paper will de-
scribe the holistic evaluation approach used to develop a
robust chromatographic method with Fusion QbD.
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Results

Representative chromatogram under nominal conditions
Careful planning and pre-runs executed at select star
points allowed for successful execution of the DOE with
all expected peaks eluting within the running time for all
the 30 runs. A representative chromatogram at the nom-
inal conditions is shown in Fig. 1. The API peak
(C1112299299-C) and the Epimer peak (C112299299-C-
epimer) can be seen, as well as seven minor impurity
peaks, among which impurity 2 and impurity 3 elute at
8.90 and 10.51 min, respectively. The inset shows the
full-scale chromatogram.

Results for statistical validation of the DOE models
ANOVA and regression data analysis revealed many
DOE models for various peak responses. The major nu-
meric regression statistics of the peak response models
are summarized in Table 2.

MSR (mean square regression), MSR adjusted, and
MS-LOF (mean square lack of fit) are major numeric
statistics for validating a DOE model. A model is statisti-
cally significant when the MSR = the MSR significance
threshold, which is the 0.0500 probability value for stat-
istical significance. The lack of fit of a model is not sta-
tistically significant when the MS-LOF < the MS-LOF
significance threshold, which is also the 0.0500 probabil-
ity value for statistical significance. The MSR adjusted
statistic is the MSR adjusted with the number of terms
in the model to assure a new term improves the model
fit more than expected by chance alone. For a valid
model, the MSR adjusted is always smaller than the
MSR and the difference is usually very small, unless too
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many terms are used in the model or the sample size is
too small.

Model Term Ranking Pareto Charts for scientific
validation of DOE models
DOE models are calculated from standardized variable
level settings. Scientific validation of a DOE model
through mechanistic understanding can be challenging
when data transformation before modeling ostensibly in-
verts the positive and negative nature of the model term
effect. To overcome this challenge, Model Term Ranking
Pareto Charts that provide the detailed effects of each
term in a model were employed. See Fig. 2 for details.
The chart presents all terms of a model in descending
order (left to right) based on the absolute magnitude of
their effects. The primary y-axis (model term effect)
gives the absolute magnitude of individual model terms,
while the secondary y-axis (cumulative percentage) gives
the cumulative relative percentage effects of all model
terms. Blue bars correspond to terms with a positive ef-
fect, while gray bars correspond to those with a negative
effect. The Model Term Ranking Pareto Charts for all
models are summarized in Fig. 2, except the two “cus-
tomer” peak area models with a single term and the two
Cpi models.
Discussion
AQDbD relies on models for efficient and effective chem-
istry screening, mean optimization, and robustness
optimization of chromatographic methods. It is critical
to “validate” the models both statistically and scientific-
ally, as inappropriate models may lead to impractical
methods. As such, this section will discuss statistical and
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Table 2 Major model regression statistics of various chromatographic responses

Response MSR MSR adjusted MSR threshold MS-LOF MS-LOF threshold
APl area (default) 0.9913 0.9906 0.0022 0.0006 0.0041

Epimer area (default) 0.9902 0.9895 0.0024 0.0008 0.0026

API area (customer) 0.8191 08124 0.0282 0.0081 0.0026

Epimer area (customer) 0.8481 0.8425 0.0237 0.0068 0.0017

AP plate count 0.9101 0.8906 0.0516 0.0206 0.0716

API RT (min) 0.9988 0.9984 0.0009 0.0003 0.0028

Epimer RT (min) 0.9986 0.9982 0.0009 0.0004 0.0014

Impurity 2 RT (min) 0.9988 0.9986 0.0006 0.0002 0.0014

Impurity 3 RT (min) 0.9983 0.9979 0.0011 0.0004 0.0022

# of peaks 0.8582 0.8356 0.0626 0.0250 0.0613

# of peaks with 2 1.5 — resolution 0.7928 0.7889 0.0711 0.0275 0.0400

API plate count Cp 0.9949 0.9924 0.0059 N/A N/A

# of peaks with 2 1.5 — resolution Cy 0.9999 0.9999 0.0001 N/A N/A

scientific validation of the DOE models. After the than their respective MSR threshold, which ranged

models were fully validated for all selected individual
method responses, the method MODR was substantiated
by balancing and compromising among the most im-
portant method responses.

Statistical validation of the DOE models
As shown in Table 2, the MSR values
0.7928 to 0.9999. All MSR values were

ranged from
much higher

from 0.0006 to 0.0711, indicating that all models were
statistically significant and explained the correspond-
ing chromatographic response data. The MSR ad-
justed values were all smaller than their respective
MSR values, and the differences between the two was
always very small (the largest difference was 0.0195
for the API plate count model), indicating that there
was no overfitting for the models. There was slight

. 100% g 150000.0000 - 100% & 20000.0000 100% %
E 10000000.0000 £ E - - g 3
b 75% & 100000.0000 5% 8 w 15000.0000 % 8
E & E & E &
[, - s0% 2 2 50% 2 = s0% 2
§ 200000000 5 E  50000.0000 3 3 3
o - 2 o ~ 3 k-] - H
= 2% E 2 %% E = 2% E
o . (5] o
0.0000+ Los 0.0000 0% Lose
s &
15.000 100% & 100% g 100% g,
5 g 3 g 3 £
5 10000 % &5 % § o % 8
B & E & E o
= s0% ¢ s s0% 2 - s0% 2
% so000 5 3 5 3 3
2 2% E = 25% E = 2% E
o o o
0.000 Lo% 0% Lo%
6.0
. 100% 3 — 100% g _— 100% o
B g 5 80 S e g 3 - g
& g 2 - T 2 75% §
w %% 9 W ogo gl 7% w 40 P g
E g E g § “ ©
= 50% 2 = 40 s0% 2 = S0% 2
z B 3 B 3§20 E
g % B g = - % E
= 25% E s 20 25% E = 25% §
o o o
0% 0.04 Los 0.0 Los
o @ LR o @ v o
Fig. 2 Model Term Ranking Pareto Charts. Top row from left to right: APl area (default), Epimer area (default), API plate count. Middle row from
left to right: API RT, Epimer RT, Impurity 2 RT. Bottom row from left to right: impurity 3 RT, # of peaks, # of peaks with = 1.5 — resolution
J




Dong et al. AAPS Open (2021) 7:3

lack of fit for the two customer models due to very
low pure errors, and the MS-LOF cannot be calcu-
lated for the two Cp model because the Monte Carlo
simulation gives essentially zero pure error. Other
than that, the MS-LOF < the MS-LOF significance
threshold for all other models, indicating the lack of
fit was not statistically significant.

In addition to the above numeric statistical valid-
ation, various model residual plots were employed for
graphical statistical model validation. The parameter—
residual plots and the run number-residual plots for
all models showed no defined structure, indicating
random residual distribution. The normal probability
plots showed all residual points lay in a nearly
straight line for each single model, indicating normal
residual distribution for all models. The randomly
and normally distributed residuals provided the pri-
mary graphical statistical validation of the DOE
models. See Fig. 3 for representative residuals plots
for the “# of Peaks” model.
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Scientific validation of the DOE models

With all models statistically validated, the discussions
below will focus on scientific validation of the models by
mechanistic understanding.

Peak area models for APl and Epimer peaks

Peak areas and peak heights have been used for chroma-
tographic quantification. However, peak area was chosen
as the preferred approach as it is less sensitive to peak
distortions such as broadening, fronting, and tailing,
which can cause significant variation in analyte quantita-
tion. To use peak area to reliably quantify the analyte
within the MODR of a robust chromatographic method,
the peak area must remain stable with consistent analyte
injections.

Peak area models can be critical to the method devel-
opment and validation with multivariate DOE approach.
Solid peak area models were revealed for the API and
Epimer peaks in this study. See the “API (default)” and
“Epimer (default)” rows in Table 2 for the detailed model
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Fig. 3 Representative residuals plot for the “# of Peaks” model. Upper: run no - residuals plot; lower: residues normal probability plot
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regression statistics. See Fig. 2 for the Model Term
Ranking Pareto Charts. See Eqs. 2 and 3 below for the
detailed models.

API Peak Area = +23,438,293.01-2, 672, 900.45(A)
+268,590.01(A)*

(2)

Epimer Peak Area = +270,051.96-30,896.51(A)
+ 4,332.26(A)”

(3)

Although a full quadratic model for the four-factor
five-level CCC design has a total of fourteen potential
terms, multivariate regression analyses revealed that only
two of the fourteen terms are statistically significant for
both the API and Epimer peak area models. In addition,
the flow rate term and flow rate squared-terms are iden-
tical for the two models, indicating the other three pa-
rameters (final percentage strong solvent, oven
temperature, and EDTA concentration) have no signifi-
cant effect on peak area for both peaks.

Oven temperature and EDTA concentration have neg-
ligible effect on peak area and thus were not significant
terms in the peak area models. The percentage of strong
solvent was also not a significant term in the peak area
models even though it did appear to influence peak
height almost as much as flow rate, but not the peak
area, as seen in Fig. 4. It was hypothesized that the two
flow rate terms in the model consisted of a strong nega-
tive first order term and a weak positive second order
term, but more investigation was needed.

Peak purity and peak integration are the primary fac-
tors affecting peak area. Partial or total peak overlap
(resolution < 1.5) due to analyte co-elution can impact
the peak purity resulting in inaccurate integration of
both peaks. Peak integration may also be affected by un-
stable baseline and/or peak fronting and tailing due to
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uncertainty in determining peak start and end points. In
this DOE study, the API and Epimer peaks were consist-
ently well-resolved (resolution > 2.0) and were also sig-
nificantly higher than the limit of quantitation,
contributing to the strong peak area models. In contrast,
no appropriate peak area models could be developed for
other impurity peaks as they were either not properly re-
solved or were too close to the limit of quantitation. For
peaks with resolution < 1.0 there will likely never be an
area model with reliable predictivity as the peak area
cannot be consistently and accurately measured.

The importance of a mechanistic understanding of the
DOE models for AQbD has been extensively discussed.
The API and Epimer peak area models were very similar
in that they both contained a strong negative first order
flow rate term and a weak positive second order flow
rate term.

The strong negative first order term can be explained
by the exposure time of the analyte molecules to the de-
tector. The UV detector used in the LC method is non-
destructive and concentration sensitive. Analyte mole-
cules send signals to the detector when exposed to UV
light while flowing through the fixed length detecting
window in a band. As the molecules are not degraded by
the UV light, the slower the flow rate, the longer the an-
alyte molecules are exposed to the UV light, allowing for
increased signal to the detector and thus increased ana-
lyte peak area. Simple direct linear regression of the peak
area against inverse flow rate confirmed both the API
and Epimer peak areas were proportional to the inverse
flow rate, with R? values > 0.99 (data not included).

As there was no obvious mechanistic explanation of
the weak positive second order term in the models, more
investigation was needed. Multivariate DOE customer
models were pursued. The acquired customer models,
listed in Eqgs. 4 and 5, used inverse flow rate “1/A” in
place of the flow rate “A” for all pertinent terms among
the fourteen terms. The major model regression

-
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Fig. 4 Effects of final percentage of strong solvent and flow rate on the APl peak area and peak height: run 15 (black) = 31%/0.9 mL/min; run 11
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statistics of the customer models are summarized in the
“API (customer)” and “Epimer (customer)” rows in Table
2. Both customer models contain a single inverse flow
rate term, confirming the negative effect of flow rate on
peak area for both peaks. The customer models in Egs. 4
and 5 provide more intuitive understanding of the flow
rate effects on peak area than the “default” models in
Egs. 2 and 3. The weak positive second order flow rate
term in Egs. 2 and 3 contributes less than 15% effect to
the peak area and is very challenging to explain mechan-
istically. This kind of model term replacing technique
may be of general value when using DOE to explore and
discover new scientific theory, including new chromato-
graphic theory.

Additionally, the peak area models in Egs. 2-5 re-
vealed that the pump flow rate must be very consistent
among all injections during a quantitative chromato-
graphic sequence. Currently, the best-in-industry flow
rate precision for a binary UPLC pump is “< 0.05% RSD
or < 0.01 min SD” (Thermo Fisher Scientific, Vanquish
Pump Specification. 2021).

API Peak Area = +21,403,748.42
+100,731.30((1/A)) (4)

Epimer Peak Area = +247,286.48
+1,173.90((1/A)) (5)

API peak plate count model

Column plate count is potentially useful in DOE model-
ing as it is a key parameter used in all modes of chroma-
tography for measuring and controlling column
efficiency to assure separation of the analytes. The equa-
tion for plate count (N) is shown below. It is calculated
using peak retention time () and peak width at half
height (w;,2) to mitigate any baseline effects and provide
a more reliable response for modeling-based QbD chro-
matographic method development.

(t,)*

N = 5.54 .
wi/2)

The peak plate count model for the API peak can be
seen in Eq. 6. It was developed by reducing the fourteen
terms. The major model quality attributes are summa-
rized in Table 2.

API Peak Plate Count = +19,991.86
+3,322.41(B)-767.71(D)

+720.10(B)*-741.62(C)*-664.70(C+D)
(6)

The flow rate was not a critical factor in the plate
count model. This seemingly goes against the Van
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Deemter equation (van Deemter et al. 1956), which
states that flow rate directly affects column plate height
and thus plate count. However, the missing flow rate
term can be rationalized by the LC column that was
used. According to the Van Deemter equation, plate
height for the 150 x 4.6 mm, 3.5 um column will remain
flat at a minimum level within the 0.7-1.1 mL/min flow
rate range used in this DOE study (Altiero 2018). As
plate count is inversely proportional to the plate height,
it will also remain flat at a maximal level within the 0.7—
1.1 mL/min flow rate range.

The most dominating parameter in the API plate
count model was the final percentage of strong solvent.
Its two terms B and B* provided more than 60% positive
effects to the plate count response (see the Model Term
Ranking Pareto Chart in Fig. 2) and could be easily ex-
plained by the inverse relationship between plate count
and peak width when the gradient slope is increased.

Retention time models

Retention time (RT) and peak width are the primary at-
tributes for a chromatographic peak. They are used to
calculate secondary attributes such as resolution, plate
count, and tailing. These peak attributes together define
the overall quality of separation and subsequently quan-
tification of the analytes. RT is determined using all data
points on a peak and is thus a more reliable measurand
than peak width, which uses only some data points on a
peak. As such, peak width cannot provide the same level
of RT accuracy, especially for minor peaks, due to uncer-
tainty in the determination of peak start, end, and
height. Consequently, RT is the most reliably measured
peak attribute.

The reliability of the RT measurement was confirmed
in this DOE study. As listed in Table 2, well-fitted RT
models were acquired for the major API and Epimer
peaks as well as the minor impurity 2 and impurity 3
peaks. The retention time models are listed in Egs. 7-10
(note: reciprocal square for the Epimer and impurity 2,
and reciprocal for impurity 3 retention time data trans-
formation before modeling inverted the positive and
negative nature of the model term effect in Eqs. 8-10,
see the Model Term Ranking Pareto Charts in Fig. 2 for
the actual effect). The four models shared three com-
mon terms: flow rate, final percentage of strong solvent,
and the square of final percentage of strong solvent.
These three terms contributed more than 90% of the ef-
fect in all four RT models. Furthermore, in all four
models the flow rate and final percentage of strong solv-
ent terms consistently produced a negative effect on RT,
whereas the square of the final percentage of strong
solvent term consistently produced positive effects.
While the scientific rationale for the negative effects of
the first two terms is well-established, the rationale for
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the positive effects of the third term lies beyond the
scope of this study.

API RT = 13.37632-0.99845(A)-2.05511(B)
+0.08980(C) + 0.14804(A)*
+0.33645(B)* + 0.21846(A*B) (7)

(Epimer RT)™/? = 0.01520 + 0.00176(A)
+0.00149(B)-0.00008(C)~0.00007(B)*
+0.00014(A%B)-0.00006(A+D)

(8)
(Imp 2 RT) /2 = 0.01306 + 0.00154(A)
+0.00165(B)
+0.00005(D)-0.00011(B)>
+0.00012(AxB) (9)

(Imp 3 RT)™ = 0.09801 + 0.00619(A)
+ 0.00918(B)—0.00022(C)
+ 0.00025(D)-0.00026(A)>~0.00072(B)*

(10)

As RT is typically the most reliable measured peak re-
sponse, therefore, it produces most reliable models. One
potential shortcoming of RT modeling-based method
optimization is that the resolution of two neighboring
peaks is not only affected by the retention time, but also
by peak width and peak shape, such as peak fronting
and tailing.

Peak number models

A representative analytical sample is critical for AQbD
to use DOE to develop a chromatographic method cap-
able of resolving all potential related substances. Multi-
variate DOE chromatography of a forced degradation
sample may contain many minor peaks, which may elute
in different orders across the different runs of the study,
making tracking of the individual peaks nearly impos-
sible. One way to solve this problem is to focus on the
number of peaks observed, instead of tracking of individ-
ual peaks. Furthermore, to avoid an impractical method
with too many partially resolved peaks, the number of
peaks with > 1.5 resolution could be an alternative re-
sponse for modeling.

Excellent models were acquired for both the num-
ber of peak responses and the number of peaks with
> 1.5 resolution in this DOE study. See Table 2 for
the major model statistics, Fig. 2 for the Model Term
Pareto Ranking Chart, and Egs. 11 and 12 for the de-
tailed models (note: reciprocal square data transform-
ation before modeling reversed the positive and
negative nature of the model term effect in Eqs. 11—
12; see the Model Term Ranking Pareto Charts in
Fig. 2 for the actual effect). Of the 14 terms, only
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four were statistically significant for the peak number
model and only three were statistically significant for
the resolved peak number model. Additionally, it is
notable that the two models share three common
terms (final percentage of strong solvent (B), flow rate
(A), and oven temperature (C)) and the orders of im-
pact for the three terms is maintained as (B) > (A4) >
(C), as seen in the Model Term Ranking Pareto
Chart. The models indicated that within the evaluated
ranges the final percentage of strong solvent and flow
rate have negative effects on the overall separation,
while column temperature has a positive effect. These
observations align well with chromatographic scien-
tific principles.

(No.of Peaks) /> = +0.028 + 0.003(A)
+ 0.009(B)-0.002(C)-0.002(D)*

(11)

(No.of Peaks>1.5-USP Resolution) />

= +40.039 + 0.005(A) + 0.015(B)-0.003(C)  (12)

Challenges and solutions to peak resolution modeling

No appropriate model was found for the API peak reso-
lution response in this study, possibly due to very high
pure experimental error (34.2%) based on the replication
runs. With this elevated level of resolution measurement
error, only large effects of the experiment variables
would be discernable from an analysis of the resolution
data. There are many potential reasons for the high pure
experimental error: (1) error in the resolution value de-
termination in each DOE run, especially with small peak
size or tailing of the reference impurity peaks; (2) the
use of different reference peaks to calculate the reso-
lution when elution order shifts between DOE runs; (3)
the column is not sufficiently re-equilibrated between
different conditions (note: Mention of column equilibra-
tion was hypothetical in this case and only to stress the
importance of column conditioning during DOE in gen-
eral. As Fusion QbD automatically inserts conditioning
runs into the DOE sequence where needed, this was not
found to be an issue in this case study). The respective
solutions to overcome these challenges are (1) when ref-
erence materials are available, make a synthetic method-
development sample composed of each analyte at con-
centrations at least ten times the limit of quantitation;
(2) keep the concentration of analytes in the synthetic
sample at distinguishably different levels so that the
peaks can be tracked by size; and (3) allow enough time
for the column to be sufficiently re-equilibrated between
different conditions.
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Table 3 Critical method parameter settings for the optimized

method

Variable Level setting
Pump flow rate (mL/min) 0.78

Final % strong solvent (%) 342

Oven temperature (°C) 308

EDTA concentration (mM) 042

Method robustness evaluation and optimization by
Monte Carlo simulation

The robustness of a method is a measure of its capacity
to remain unaffected by small but deliberate variations
in method parameters. It provides an indication of the
method’s reliability during normal usage. Robustness
was demonstrated for critical method responses by run-
ning system suitability checks, in which selected method
parameters were changed one factor at a time. In com-
parison, the AQbD approach quantifies method robust-
ness with process robustness indices, such as Cp and
Cplo through multivariate robustness DOE, in which crit-
ical method parameters are systematically varied, simul-
taneously. Process robustness indices are standard
statistical process control matrices widely used to quan-
tify and evaluate process and product variations. In this
AQDbD case study, method capability indices were calcu-
lated to compare the variability of a chromatographic
method response to its specification limits. The com-
parison is made by forming the ratio between the spread
of the response specifications and the spread of the re-
sponse values, as measured by six times standard devi-
ation of the response. The spread of the response values
is acquired through tens of thousands of virtual Monte
Carlo simulation runs of the corresponding response
model, with all critical method parameters varied around
their setting points randomly and simultaneously ac-
cording to specified distributions. A method with a
process capability of > 1.33 is considered robust as it will
only fail to meet the response specifications 63 times out
of a million runs and thus is capable of providing much
more reliable measurements for informed decisions on
drug development, manufacturing, and quality control.
Due to its intrinsic advantages over the OFAT approach,
multivariate DOE robustness evaluation was recom-
mended to replace the OFAT approach in the latest
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regulatory guidelines (FDA Guidance for industry-
analytical procedures and methods validation for drugs
and biologics. 2015).

In this DOE study, solid C,x models were produced
for the “API Plate Count” and “Number of Peaks > 1.5
USP Resolution”. See Table 2 for the detailed model re-
gression statistics.

Multiple responses method optimization
Once models have been established for selected individ-
ual method responses, overall method evaluation and
optimization can be performed. This is usually substanti-
ated by balancing and compromising among multiple
method responses. Three principles must be followed in
selecting method responses to be included in the final
optimization: (1) the selected response is critical to
achieve the goal (see Table 4); (2) a response is included
only when its model is of sufficiently high quality to
meet the goals of validation; and (3) the total number of
responses included should be kept to a minimum.
Following the above three principles, five method re-
sponses were selected for the overall method evaluation
and optimization. Best overall answer search identified a
new optimized method when the four critical method
parameters were set at the specific values as listed in
Table 3. The cumulative desirability for the five desired
method response goals reached the maximum value of
1.0. The desirability for each individual goal also reached
the maximum value of 1.0, as listed in Table 4.

Method Operable Design Region (MODR)

The critical method parameter settings in Table 3 define
a single method that can simultaneously fulfill all five
targeted method goals listed in Table 4 to the best ex-
tent possible. However, the actual operational values of
the four critical parameters may drift around their set
points during routine method executions. Based on the
models, contour plots for method response can be cre-
ated to reveal how the response value changes as the
method parameters drift. Furthermore, overlaying the
contour plots of all selected method responses reveal the
MODR, as shown in Figs. 4, 5, and 6. Note that for each
response, a single unique color is used to shade the re-
gion of the graph where the response fails the criteria;

Table 4 Predicted results and confidence intervals for the selected responses of the optimized method

Response Goal Predicted result Desirability =~ — 2 Sigma conf. limit  + 2 Sigma conf. limit
No. of peaks Maximize 8.0 1.0000 6.3 10.5

No. of peaks =2 1.5 — USP resolution Maximize 6.2 1.0000 4.8 9.5

Max peak 1 — USP plate count Maximize 20,313 1.0000 17,560 23,067

Max peak 1 — USP plate count — Cp Maximize 2.01 1.0000 1.78 2.24

No. of peaks 2 1.5 — USP resolution — C, Maximize 359 1.0000 354 363
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thus, criteria for all responses are met in the unshaded
area.

The Trellis overlay graph in Fig. 5 reveals the MODR
from the perspectives of all four critical method parame-
ters, among which flow rate and final percentage of
strong solvent change continuously while oven
temperature and EDTA additive concentration were
each set at three different levels. Figure 5 clearly demon-
strates how the size of the MODR changes with the four
method parameters. The single overlay graph in Fig. 6
shows that the original as-is method (represented by the
center point T) is on the edge of failure for two method
responses, number of peaks (red) and number of peaks >
1.5 resolution (blue), indicating that the original method
is not robust. Conversely, point T in the single overlay
graph in Fig. 7 is at the center of a relatively large un-
shaded area, indicating that the method is much more
robust than the original method.

Conclusion

Through the collaboration of regulatory authorities and
the industry, AQbD is the new paradigm to develop ro-
bust chromatographic methods in the pharmaceutical
industry. It uses a systematic approach to understand
and control variability and build robustness into chro-
matographic methods. This ensures that analytical re-
sults are always close to the product true value and meet
the target measurement uncertainty, thus enabling in-
formed decisions on drug development, manufacturing,
and quality control.

Multivariate DOE modeling plays an essential role in
AQbD and has the potential to elevate chromatographic
methods to a robustness level rarely achievable via the
traditional OFAT approach. However, as demonstrated
in this case study, chromatography science was still the
foundation for prioritizing method inputs and responses
for the most appropriate DOE design and modeling, and
provided further scientific validation to the statistically
validated DOE models. Once models were fully validated
for all selected individual method responses, the MODR
was substantiated by balancing and compromising
among the most important method responses.

Developing a MODR s critical for labs that transfer in
externally sourced chromatographic methods. In this
case study, method evaluation using AQbD produced
objective data that enabled a deeper understanding of
method variability, upon which a more robust method
with a much larger MODR was proposed. The in-depth
method variability understanding through AQbD also
paved the way for establishing a much more effective
method control strategy. Method development and val-
idation from a multivariate data driven exercise led to
better and more informed decisions regarding the suit-
ability of the method.
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