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Abstract 

The use of a Quality by Design (QbD) approach in the development of pharmaceutical products is known to bring 
many advantages to the table, such as increased product and process knowledge, robust manufacturing processes, 
and regulatory flexibility regarding changes during the commercial phase. However, many companies still adhere to a 
more traditional pharmaceutical process development—in some cases due to the difficulty of going from a theoreti-
cal view of QbD to its actual application. This article presents a real-world case study for the development of an indus-
trial pharmaceutical drug product (oral solid dosage form) using the QbD methodology, demonstrating the activities 
involved and the gains in obtaining systematic process and product knowledge.
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Introduction
In 1992, Dr. Joseph M. Juran introduced the concept of 
quality being designed into a product and that most qual-
ity issues were related to the way in which the product 
was designed in the first place (Yu et  al., 2014). Over 
time, this Quality by Design (QbD) approach was trans-
lated into the pharmaceutical industry, reaching its most 
important evolution steps with the publication of three 
guidelines by the International Council for Harmonisa-
tion of Technical Requirements for Pharmaceuticals for 
Human Use (ICH), namely, ICH Q8(R2), Q9, and Q10 
(ICH, 2009; ICH, 2005; ICH, 2008). These guidelines 
describe the elements of QbD: pharmaceutical devel-
opment, quality risk management, and pharmaceutical 
quality system.

ICH Q8(R2) defines QbD as “a systematic approach 
to development that begins with predefined objectives 

and emphasizes product and process understanding 
and process control, based on sound science and qual-
ity risk management.” This is a clear and easy to under-
stand description, at least in theory (ICH, 2009). In its 
form, QbD can be explained as an orderly, well-planned 
procedure to assemble and deliver quality. For that, it is 
required an extensive comprehension of how the product 
and process factors impact quality (Malik et al., 2019).

But how to go from definitions and guidelines to an 
actual process and product development in a real-world 
situation? The uncertainty in the answer drives many 
companies away from QbD and to adhere to a more 
traditional approach to pharmaceutical development. 
Figure 1 represents a workflow with all the important ele-
ments that must be present in a QbD development of a 
pharmaceutical product.

Just like the ICH Q8(R2) guideline indicates, one of 
the first elements to be defined is the Quality Target 
Product Profile (QTPP)—a summary of the desirable 
quality characteristics a product should have to ensure 
the desired quality, taking into account safety and effi-
cacy of the drug product to the patient (Yu et al., 2014; 
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ISPE, 2011). The end goal of process development is 
the definition of a control strategy that ensures that the 
process consistently delivers a product with the quality 
for which it was designed. The multidimensional com-
bination and interaction of process inputs that have 
demonstrated to maintain the Critical Quality Attrib-
utes (CQA, i.e., the product quality characteristics that 
are critical for ensuring the safety and efficacy from a 
patient’s perspective) within their specification (and 
thus, assure quality) is called the Design Space (DS) (Yu 
et al., 2014; ICH, 2009; ISPE, 2011). This concept brings 
certain regulatory flexibility to the table, since altera-
tions made within the DS are not considered changes 
(ICH, 2009). The elements represented in Fig.  1 are 
obtained using risk management and knowledge man-
agement methodologies. The combination of risk 
assessment (RA) and data analysis is one of the stone 
pillars for QbD and the opportunities for acquiring and 
managing knowledge based on this arrangement are 
central for a successful QbD pharmaceutical develop-
ment and lifecycle management.

A drug product development case study
Herein, we describe how the QbD approach and its con-
cepts, summarized in Fig. 1, were applied to a real-case 
development of a generic pharmaceutical drug product 
(DP), i.e., of a drug intended to be submitted to the regu-
latory agencies as an alternative to a brand-name drug 
(patent-protected). The project’s goal was to develop a 
generic two-API (active pharmaceutical ingredient) solid 
dosage oral form using the QbD approach outlined in 
Fig.1, in order to obtain a deeper product and process 
understanding to expedite time to market, assure pro-
cess assertiveness and reduce risk of defects after prod-
uct launch. Limitations of this work are the ones typical 
of the development of a generic DP, where the physico-
chemical characteristics of the reference listed drug (pat-
ent-protected brand-name drug) must be considered. The 
proposed generic DP must be comparable to the innova-
tor DP in dosage form, strength, route of administration, 
quality, performance characteristics, and intended use. 
So, the generic manufacturer must scientifically demon-
strate that his product performs in the same way as the 
innovator drug with respect to pharmacokinetic and 

Fig. 1  Quality by Design methodology applied for a pharmaceutical product development
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pharmacodynamic properties (e.g., by performing bio-
equivalence studies) for it to be approved for sale after 
the patent protections expire. This work is the result of 
a collaborative project between 4Tune Engineering and 
Libbs Farmacêutica.

Materials and methods
The pharmaceutical product considered in this case 
study consists of a generic two-API oral solid dosage 
form—coated tablets. Tablets are amongst the most 
common oral solid dosage forms and consist of a com-
pressed powder formulation comprised of API(s) (or 
drug substance(s)) and inactive ingredients or excipients 
(e.g., fillers, binders, lubricants, disintegrants, coatings). 
A generic drug contains the same API as the original 
(patent-protected) innovator drug, but may vary in cer-
tain characteristics, such as the manufacturing process, 
formulation, and packaging. In this case study, the tablets 
have distinct dosages of the two active ingredients: one 
API is at very low amounts (2.5 mg), whereas the other 
is at a very high dose (up to 200 to 400 times higher). 
The reference DP is already available in the market to 
patients, with no reported risks related to drug-drug 
compatibility or with safety concerns to the patients. The 
unit operations involved are those typical of the manufac-
turing process of a coated tablet form, such as materials 
dispensing, fluid bed granulation and drying, blending, 
compression, and tablet coating. For confidentiality rea-
sons, the names of raw materials, intermediates and DP, 
manufacturing operations, parameter ranges, and other 
manufacturing details are not disclosed throughout this 
article. The results presented serve only the purpose of 
exemplifying the methodology used.

The authors’ goal with this manuscript is to provide, 
in the form of a case study, a brief outline of the steps 
involved in the application of the QbD methodology in 
the development of a pharmaceutical product. It is out of 
this paper’s scope to give a technical review or discussion 
of the methodologies and techniques comprised in the 
QbD toolkit, such as design of experiments and model-
ling approaches, and quality risk management tools. The 
interested reader should consult specialized literature for 
further methods’ details. Methodology aspects related 
with design of experiments, multivariate analysis, model-
ling, and quality risk management are given, as required 
for the purpose of this work, along the “5” section, while 
going through the case study.

The designed experiments and analyses described 
herein were performed in software JMP® version 13 
(SAS Institute Inc., Cary, NC, USA, 1989-2019). Princi-
pal Component Analysis (PCA) modelling and computer 
simulations were performed in MATLAB® version 2018a 
(The Math Works, Inc., Natick, MA, USA) and using 

PLS_Toolbox version 8.7 (Eigenvector Research, Inc., 
Manson, WA, USA).

The QbD methodology followed along this project for 
knowledge and risk management was supported by the 
use of the iRISKTM platform (version 2.8) (iRISK, 2021) 
by the interacting multidisciplinary technical team. 
Several iRISKTM tools were employed, such as Process 
Mapping, Critical Quality Attributes assessment tool, 
Cause-Effect matrix for risk assessment and criticality 
analysis, and Failure Mode and Effect Analysis (FMEA) 
for process risk assessment.

Results and discussion
How to combine risk and knowledge in pharmaceutical 
development
Following the QbD methodology (Fig. 1), one of the first 
activities conducted in this work was a criticality assess-
ment (CA) for the identification of CQAs. For this, the 
project team gathered as much product-related infor-
mation as possible from literature, specific data of the 
reference product, and the QTPP. Having a list with the 
product quality attributes and their respective target 
values/ranges is standard: fulfilling these targets is man-
datory for batch release. However, assessing these charac-
teristics from a risk-to-patient perspective might be more 
complex. From a list of about 20 potential Critical Qual-
ity Attributes (pCQAs) collected by the team, a ranking 
system for pCQAs’ CA was applied based on a criticality 
score that considered the risk for the patient of each qual-
ity attribute. Specifically, the criticality score is a quanti-
tative measure given by the product between uncertainty 
and impact. The uncertainty measures the relevance of 
the available information (e.g, literature, prior knowl-
edge, in  vitro, clinical data), i.e., if there is variation in 
a quality attribute, are the consequences for the patient 
well-known? The impact measures how severe will the 
change of a given quality attribute be in terms of efficacy, 
safety, and pharmacokinetics and pharmacodynamics. 
By setting up a criticality threshold and a numeric rank-
ing, it is possible to have the quantification of risk and 
a more exact approach for defining the criticality. For 
the CA, the team employed a scoring scale with 5 levels 
(Impact score: 2 (none), 4 (low), 12 (moderate), 16 (high), 
and 20 (very high); Uncertainty score: 1 (very low), 2 
(low), 3 (moderate), 5 (high), and 7 (very high)). During 
this exercise, the attributes with low uncertainty and low 
impact were not considered critical and, therefore, were 
classified as non-CQAs (Fig.  1); Quality attributes with 
low severity but high uncertainty were considered criti-
cal - unless more information had become available to 
lower their uncertainty. The use of a systematic quality 
risk management platform for this exercise, specifically 
iRISKTM CQA Assessment tool (iRISK, 2021), ensured 
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standardization of the definition of critical quality by 
allowing an alignment of methodologies, concepts and 
evaluation criteria by the involved technical teams. At the 
end of this step, the project team identified about fifteen 
CQAs, such as assay, content uniformity and dissolution 
of each API, water content, and impurities.

With a clear definition of the critical quality elements 
and respective targets, the manufacturing process can 
now be designed to meet those requirements (Fig.1). Five 
different manufacturing processes were then considered 
and evaluated by the technical team based on process 
knowledge and experience, and given the product’s spe-
cificities (namely the technical challenges related with the 
manufacture of a DP having two APIs at extremely differ-
ent concentrations). Figure 2 shows the process flowchart 
for the chosen process comprising 10-unit operations, 
including materials dispensing, powdered material seiv-
ing, solution/suspension preparation steps, fluid bed 
granulation and drying, blending, compression, and tab-
let coating.

In the next step of the QbD methodology (Fig. 1), the 
critical aspects of the product formulation and manufac-
turing process were assessed by following a combination 
of risk-based and data-driven approaches. A preliminary 
CA based on the reference product and/or similar prod-
ucts information (literature and prior knowledge) helped 
to identify which excipient and/or combination of excipi-
ents might present the highest risk of affecting the final 

product’s quality. This CA was performed using the risk 
tool Cause-Effect Matrix (CEM) (iRISK, 2021). In gen-
eral terms, a CEM involves rating process inputs to pro-
cess outputs based on their interaction impact, and then 
ranking process inputs based on the order of importance 
of the process output to the customer (ISPE, 2017; ISPE/
PDA, 2019). For confidentiality reasons, the CEM gener-
ated at this stage of the project is not shown. It is similar 
to the CEM given in Fig. 4, but has the formulation excip-
ients in rows. The risk of a formulation component affect-
ing a given final product’s CQA (entry of the CEM) was 
classified as low (score of 1), medium (score of 3), and 
high (score of 9) based on literature and prior knowledge, 
as stated above. This preliminary risk rank filtering of for-
mulation components identified the two APIs and five 
excipients as having the highest impact on the product’s 
quality. Then, a design of experiments (DoE) approach 
(Montgomery, 2020) was followed to characterize these 
formulation components’ impact on the product’s CQAs, 
and their respective interactions, and therefore define the 
optimal quantities of each excipient in the drug formu-
lation. A designed experiment consists of a set of trials, 
in which multiple input factors (independent variables) 
are manipulated to determine their effect on one or more 
response variables (dependent variables); these trails 
are run at different factor values (known as levels). DoE 
provides an efficient framework to do experimentation 
and thus increase process and product understanding 

Fig. 2  Manufacturing process workflow of the pharmaceutical drug product (DP). The green boxes represent raw materials (RM)—both active 
pharmaceutical ingredients and excipients; the yellow boxes represent unit operations (UO), and the blue box represents the final DP
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and optimize processes. In fact, DoE can be applied for 
different investigation objectives, such as (1) screening 
studies (where the goal is to discover which are the most 
important factors that affect the process under study, 
given a large set of potential factors), (2) optimization 
studies (involve determining optimal factor settings to 
achieve a desired process objective), (3) regression model-
ling (where is goal is to produce a detailed mathematical 
model quantifying the dependence of response variables 
on process inputs, instead of just examining how fac-
tors contribute to a response), and (4) robustness studies 
(involve determining operational settings that are least 
affected by noise factors or uncontrolled factors varia-
tions (e.g., environmental variation, manufacturing varia-
tion) that might be expected during the process to ensure 
that the process is robust to them).

In this case, the formulation DoE was created using 
as factors the ratio between APIs (API-1/API-2, where 
API-1 is the low dosage API and API-2 is the high dos-
age one) and the percentage of five excipients (selected 
in the previous CA, as abovementioned). Based on the 
outcomes of the CA of the formulation components, the 
considered responses were the decrease in assay of each 
API, the amount of total impurities, and the amount of 
individual impurities of the final product. The type of 
screening design applied was a Definitive Screening 
Design (DSD) (SAS Institute, 2019). DSDs consist of an 
innovative and efficient class of screening designs, offer-
ing several advantages over standard screening designs 
(such as fractional factorial design). DSDs avoid con-
founding of effects (i.e., main effects are not confounded 
with each other or with two-way interactions) and can 
identify factors causing a nonlinear effect on the response 
(by employing three levels for each continuous factor—
low, middle, and high—these designs allow estimation of 
quadratic model terms for continuous factors). Besides, 
DSDs require a small number of trials (e.g., with six or 
more factors, the minimum number of required runs is 
usually only a few more than twofold the number of fac-
tors). DSDs are appropriate for early-stage experimenta-
tion work, usually with four or more factors, and allow 
to perform screening, optimization, and robustness stud-
ies. These advantages of DSDs justified the selection of 
this type of screening against standard screening designs, 
such as fractional factorial designs, to perform the for-
mulation screening and optimization studies, as a trade-
off between budgetary constraints (time and resources) 
and knowledge expected to extract from the experi-
ments. By applying a DSD, the formulation DoE therefore 
consisted of 13 trials, and each factor assumed three lev-
els (low, middle, high).

Based on the DoE outcomes, multivariate linear 
regression models were built describing the relationship 

between the formulation components and the responses 
evaluated. These models were then used for formulation 
optimization (SAS Institute, 2019), i.e., to estimate the 
amount of each formulation component required to min-
imize the impurity profile of the drug product and mini-
mize the decrease in assay. The formulation optimization 
was performed on the reduced models, i.e., models con-
structed after removing non-significant terms from the 
initial full DoE models (terms with a p-value above 0.05). 
The following three factors remained in the optimized 
multivariate linear models: API-1/API-2 ratio, amount 
of stabilizer, and amount of Excipient A. The optimal set-
tings for the formulation components are represented in 
red in Fig. 3 (red dotted lines and red values). Each plot 
shows the effect of a given factor (x-axis) on each of the 
responses (y-axis). For example, the profiles indicate that: 
a) the % of Stabilizer in the formulation affects all the five 
responses (assay and impurity levels) and a lower con-
tent of Stabilizer has a detrimental effect on the DP assay; 
b) the amount of Excipient A in the formulation has no 
impact on Unknown Impurity B (flat line) but affects the 
other impurities; c) while the ratio of APIs has no effect 
on the DP assay (horizontal line), lower values of API-1/
API-2 contribute to higher impurity levels of Unknown 
Impurity A and B.

Next, a similar approach based on a CA exercise 
using the CEM risk tool (iRISK, 2021) was applied 
for defining the critical aspects of the manufacturing 
process, specifically to determine the Critical Process 
Parameters (CPPs)—Fig. 1. As per ICH Q8(R2), a CPP 
is “a process parameter whose variability has an impact 
on a CQA and therefore should be monitored or con-
trolled to ensure the process produces the desired qual-
ity” (ICH, 2009).

The first step involved applying the CEM tool to rate 
the unit operations in terms of their impact on the prod-
uct’s CQAs (scoring scale: low = 1; medium = 3; high 
= 9). These results supported a prioritization, in which 
the unit operations having the potential strongest impact 
(highest overall score) on the product’s CQAs were 
assessed first. As shown in Fig.  4, unit operations UO2 
and UO6 were the top-ranking ones.

These two process steps (UO2 and UO6) were then 
investigated by running DoEs with the goal of under-
standing which process parameters (PPs) were influenc-
ing the CQAs and in which extent. First, a prioritization 
step using the CEM tool (iRISK, 2021) was done in 
order to select from the original 20 PPs of UO2 and 
UO6, those to be considered for the DoEs. This PPs 
ranking was based on their level of impact in the final 
product’s quality (scoring scale: low = 1; medium = 3; 
high = 9), leading to the selection of 8 potential CPPs 
(pCPPs) for UO2, and 6 pCPPs for UO6 (not disclosed 
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herein, due to confidentiality reasons). Then, in both 
cases, the DoE followed a DSD, given the advantages 
provided by this type of experimental design and the 
scope of the experimental work (process screening and 
optimization). Three levels were therefore considered 
for each factor in both DoEs (low, middle, and high); the 
DoEs considered 17 runs for UO2 (with 8 PPs used as 
factors and 7 CQAs as responses) and 13 runs for UO6 
(with 6 PPs considered factors and 7 CQAs considered 
responses). The responses were the same for both DoEs 
and included relevant quality attributes of the final DP, 
such as assay, content uniformity, and dissolution. Fig-
ure  5 exemplifies how the knowledge obtained from 
the UO2 DoE analysis can support the identification of 
CPPs. The right-hand plot shows the true versus pre-
dicted values of Assay of API-1 obtained after fitting 
a multiple linear regression model to the UO2 DoE 
data. The model constructed to predict Assay of API-1 

considers a quadratic term (UO2_PP4*UO2_PP4), three 
main effects (UO2_PP4, UO2_PP3, and UO2_PP6) and 
a two-way interaction (UO2_PP3*UO2_PP6). Critical-
ity of UO2_PP3 and UO2_PP4 was thus set to critical 
(CPPs) in the criticality assessment table of iRISKTM 
(left-hand panel in Fig.  5) since the variability of these 
PPs is directly impacting at least one of the CQAs (assay 
of API-1 in this case) in a significant way (as given by 
the calculated p-values of the multiple linear mod-
els’ outcomes; model terms with a p-value below 0.05 
are considered significant). Parameters UO2_PP1 and 
UO2_PP2 were also found to be critical, presenting a 
significant relationship with other CQAs at a 0.05 level 
(data not shown).

Regarding UO6, parameters UO6_PP1 and UO6_PP3 
were found to be critical (data not shown). Besides con-
firming the criticality of potential CPPs of UO2 and 
UO6, the DoE results allowed defining a preliminary 

Fig. 3  Optimization of the product formulation using DoE studies. Each plot shows the predicted effect of a given factor in the x-axis (formulation 
component) on each of the responses (y-axis). The red dotted lines indicate the optimized solutions for the responses of interest (lowest impurity 
levels and lowest decrease in assay in the final drug product)



Page 7 of 13Testas et al. AAPS Open            (2021) 7:12 	

operating range for their PPs to be tested on the scale-up 
stage. For unit operations without a DoE analysis, results 
from additional experimental work were used to justify 
the criticality of their respective PPs. In the absence of 
evidence to classify a given PP as critical or non-critical, 
the PP was considered a pCPP. Overall, more than 10 

PPs were identified as CPPs in the entire manufacturing 
process. Since most of the information was obtained at 
a small scale, the scaling up was a step of utmost impor-
tance. A small-scale DS was initially defined consider-
ing the knowledge obtained from the CA and the DoE 
results.

Fig. 4  Criticality assessment of the unit operations (UOs) using iRISKTM Cause-Effect Matrix. The risk of a given UO (in rows) affecting a given 
product’s CQA (in columns) was classified as low (score of 1), medium (score of 3), and high (score of 9). Due to confidentiality reasons, not all of the 
CQAs are shown. Given their higher overall score, operations UO2 and UO6 (highlighted) were identified as the top 2 UOs potentially affecting the 
product’s Critical Quality Attributes (CQAs)

Fig. 5  Update of the criticality assessment for the process parameters of unit operation UO2 in the iRISKTM platform (left-hand panel) based on 
the DoE outcomes (right-hand panel; the plot shows the actual versus predicted values by the model fitted for one of the responses evaluated in 
the DoE (assay of API-1)). Criticality of parameters UO2_PP4 and UO2_PP3 was set as critical (CPP = critical process parameter) since their variation 
affects the assay of API-1 (at the 0.05 significance level)
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Process knowledge, scale‑up studies, and control strategy 
definition
In the early stages of pharmaceutical process develop-
ment, investigations are performed at a small scale. 
Transformations of the small-scale observations into 
commercial-scale development (Fig.  1) require differ-
ent design strategies and different equipment which may 
cause differences in product quality (Raval et  al., 2018). 
To cope with these potential differences in quality due to 
the presence of scale-up effects when transferring from 
small scale to commercial scale, the DS in commercial 
scale must be adapted accordingly.

For the presented case study process, an assessment of 
the unit operations indicated that both UO2 and UO6 
were scale dependent. Ideally, a DoE should be per-
formed at a commercial scale, using the knowledge col-
lected at a small scale as the foundation for selecting 
PPs to be tested and their respective ranges. This scale-
up DoE would allow to (a) confirm the criticality of the 
PPs, (b) define the optimal ranges for commercial-scale 
manufacturing, and (c) develop statistical models linking 
the CPPs with the CQAs. As for this project, it was not 
feasible to perform a full DoE at a commercial scale for 
UO2 and UO6. Instead, the process operational ranges 
for UO2 and UO6 were defined based on a small set of 
commercial scale batches manufactured at specific con-
ditions, supported by knowledge acquired during the 
small-scale activities, as described next.

The methodology involved the use of Principal Com-
ponent Analysis (PCA) and the available production 
batches (observations): 9 compliant batches (i.e., batches 
conforming to the acceptance criteria for all CQAs) and 
one non-compliant batch (i.e., a batch that failed to meet 
the acceptance criteria for at least one CQA). PCA is a 
multivariate projection method of data reduction or 
data compression. It transforms a large set of variables 
into a smaller dimensional set of new variables desig-
nated as principal components (PC), each of which is a 
linear combination of the original ones. In PCA, the new 
variables are uncorrelated; the first PC to be extracted 
(PC1) captures the highest amount of variability in the 
data set and each successive component accounts for as 
much of the remaining variability as possible (Jackson, 
1991; Esbensen and Geladi, 2009; Næs et al., 2017). The 
dimensionality reduction provided by PCA allows a sim-
plified representation of the data set, which facilitates 
exploring and interpreting its correlation structure. This 
feature of PCA was thus applied at this stage of the pro-
ject to estimate the process operational ranges for UO2 
and UO6. First, a PCA model was built using the values 
of the selected CPPs for UO2 and UO6 (total of 6 CPPs: 
4 for UO2 and 2 for UO6) for the 9 compliant batches. 
This model allowed to obtain a simplified bidimensional 

representation of the two major sources of variability of 
the CPPs for UO2 and UO6, as denoted by the so-called 
score plot for the first two principal components of the 
model (PC1 and PC2). The score plot is a scatter plot 
of the scores of each sample (i.e., the projection of the 
sample/observation in the PC) on the two components 
and allows to examine the relationship between samples 
(Jackson, 1991; Esbensen and Geladi, 2009; Næs et  al., 
2017). The score plot for PC2 versus PC1 is shown in 
Fig. 6A, where each green dot corresponds to a compliant 
batch (total of 9 batches, as mentioned above); these two 
components capture about 75.4% of the total variability 
present in the data. The score plot (Fig.  6A) also shows 
the predicted scores of the non-compliant production 
batch (red dot) whose CPPs values were not used to build 
the original PCA model. The score plot was then used to 
obtain an initial estimate of the DS for UO2 and UO6: 
this corresponds to the rectangle area delimited by PC1 
and PC2 scores of the compliant batches (green dots), 
which is outlined by the blue rectangle in Fig.  6A. This 
region intentionally excludes the predicted non-compli-
ant batch (red dot), since the goal is to define the process 
operating ranges for UO2 and UO6 expected to result 
in compliance batches. Note that these two components 
(PC1 and PC2) can be described as a linear combination 
of the CPPs (not given here), so the selected score plot 
region can be converted in ranges for each of the 6 con-
sidered CPPs of UO2 and UO6.

The next stage of the procedure involved several batch 
simulation runs, whereby different combinations of the 
CPPs values within a specified range were randomly 
chosen to create new hypothetical batches (100,000 
simulated batches). The first round of 100,000 simu-
lated batches considered a broader range of possible val-
ues for UO2 and UO6 CPPs (namely, within 0.75 times 
below and 1.5 times above the lower and upper limits, 
respectively, reported by the 10 manufactured batches). 
The previously derived PCA model was then applied to 
these simulated batches, and only those batches satisfy-
ing the following three criteria were considered “accept-
able” batches: (i) predicted score values for PC1 and 
PC2 within the defined DS estimate (blue rectangle in 
Fig.  6A); (ii) Hotelling’s T2 statistics below 80% of the 
maximum value obtained by the model, and (iii) a sum of 
squared residuals below 80% of the 95% confidence limit 
of the model residuals. Hotelling’s T2 and squared residu-
als are two useful diagnostic statistics that allow assess-
ing whether a sample has an unusual variance inside the 
model (sample with large Hotelling’s T2) and/or outside 
the model (sample with large residuals). Hotelling’s T2 
(or sum of normalized squared scores) measures the 
distance from a sample to the centre of the model; The 
sum of squared residuals of a sample provides a measure 
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of the distance between the sample and its projection 
on the model (i.e., lack of fit of the model to each sam-
ple) (Jackson, 1991; Esbensen and Geladi, 2009; Næs 
et  al., 2017). These “acceptable” simulated batches were 
then employed to perform a first refinement of the CPPs 
ranges to use for UO2 and UO6, by assuming the 95% 
confidence interval for each CPP in the “acceptable” sim-
ulated batches. These new ranges of admissible values for 
CPPs were considered to generate a second set of random 

batches (100,000 batches). The resulting PCA model pre-
dictions are projected on the score plot in Fig. 6B (small 
red and green dots) and were assessed based on the same 
acceptance criteria (i)–(iii) outlined above for prediction 
scores and the two diagnostic statistics. The simulated 
samples satisfying all the acceptance criteria correspond 
to the small green points shown in Fig. 6B.

Finally, a second refinement of the allowable ranges 
for CPPs was made by running consecutive sets of batch 

Fig. 6  Definition of the operational ranges for UO2 and UO6 using PCA modelling and computer simulations. Top left panel (A): PCA score plot of 
the analysis of 9 compliant manufactured batches (green dots). The data set consists of the CPPs values measured for UO2 and UO6; the score plot 
represents the first two principal components (PC1 and PC2), which describe 53.7% and 21.7% of the variance in the data, respectively. The dashed 
line corresponds to the 95% confidence ellipse for the model scores. The red dot shows the model predicted scores for a non-compliant production 
batch. The blue outlined rectangle that covers only compliant batches defines a first estimate of UO2 and UO6 design space (DS). Top right panel 
(B): PCA model projections for two different sets of batch simulation runs (100,000 samples per run) made to refine the acceptable ranges for UO2 
and UO6 CPPs. Each small point corresponds to the predicted model scores for a simulated batch (sample) that has been generated by considering 
random combinations of the CPPs values within a predefined admissible range (see text for further details). Predicted scores were projected onto 
the original score plot shown in panel A. The blue outlined rectangle represents the first DS estimate, as defined in panel A, and was used as an 
acceptance criterion for model predicted scores together with other two diagnostic statistics (Hotelling’s T2 and sum of squared residuals). The 
small red and green dots correspond to a set of simulations made after a first refinement of the admissible values for CPPs, where simulated samples 
satisfying all the acceptance criteria are shown in green. The small blue dots represent the model outcomes for a final set of simulations made after 
a second (and final) refinement of the CPPs ranges, whereby all simulated batches were found to comply with the predefined acceptance criteria. 
Bottom panel (C): The table summarizes the initial experimental ranges of the manufactured compliant batches (orange) and the final restricted 
ranges (blue) obtained for each CPP of UO2 and UO6 based on the described methodology
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simulations (100,000 batches per run) within decreasing 
ranges of CPPs values and assessing their PCA model 
predictions based on the previously defined acceptance 
criteria. The widest restricted ranges of CPPs values lead-
ing to a 100% “acceptance” rate of simulated batches were 
chosen as the final restricted ranges. The model projec-
tions for 100,000 simulations computed within these 
new restricted CPPs ranges are shown by the blue dots 
in Fig.  6B. The restricted CPPs ranges are disclosed in 
Fig.  6C  (in blue; for comparison, the full ranges for the 
nine CQA-compliant production batches are included in 
orange). These CPPs ranges were employed to define the 
Normal Operating Range (NOR) for UO2 and UO6 and 
were applied at production to manufacture three valida-
tion batches, which fulfilled all quality requirements.

In parallel with the scale-up activities and following 
the QbD workflow (Fig. 1), a process RA was performed 
using the Failure Mode and Effect Analysis (FMEA) 
methodology. With a wide application in manufactur-
ing industries, FMEA is a risk management tool used by 
many pharmaceutical companies for risk ranking; FMEA 
provides a systematic method of identifying and prevent-
ing system, product, and process problems before they 
occur (ICH, 2005; ISPE, 2017; ISPE/PDA, 2019; ASQ, 
2020; Stamatis, 2003; Stamatis, 2019). Along the FMEA 
exercise (iRISK, 2021), a multidisciplinary technical team 
identified, analysed, and prioritized the risks, creating a 
list of all the failure modes that may occur during com-
mercial manufacturing and the potential effects related to 
each failure. Additionally, the FMEA allowed the quanti-
fication of risks and prioritization for their mitigation 
and/or elimination by classifying the risk according to 

the severity of the effect, and the occurrence and detect-
ability probabilities for the failure mode (Fig. 7). The risk 
priority number (RPN) allows the quantification of risk 
by multiplying severity, occurrence, and detectability val-
ues. Thus, FMEA represents a systematic methodology to 
rate the risks relative to each other. For that, a rating scale 
for severity, occurrence, and detectability was agreed 
between the technical team and applied along the FMEA 
activity. The scale considered a 5-level rank of even val-
ues ranging from 2 to 10. Additionally, it was defined 
beforehand a threshold value for RPN (in this case RPN 
of 288) above which mitigation actions should be defined 
to reduce the risk.

Severity was attributed according to the impact of the 
identified risk on the product’s quality and compliance, 
by extension, based on the impact for the patient. For 
example, if a risk describes an increase outside the oper-
ating range for a certain PP and that increase causes the 
CQA to go out of specification, adversely affecting the 
patient’s health, then the risk severity was classified as 
very high (rank of 10). If a given failure does not affect 
the product’s quality and the patient’s health and safety, 
its severity is ranked as very low (rank of 2). Likelihood 
of occurrence was quantified in terms of how often that 
event might occur during routine batch manufacturing 
(a rank of 2 if the failure is unlikely; a rank of 4 if the 
failure has a probability of occurrence below 1%; a rank 
of 6 if there are 5 occurrences in 100 events; a rank of 
8 if the failure is frequent but with a probability below 
10%; and a rank of 10 if the failure is very frequent with 
a probability of having more than 3 occurrences in 10 
events).

Fig. 7  Decomposition of risk in severity, occurrence and detectability, and identification of the source of knowledge used for their assessment (CQAs, 
critical quality attributes)
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During scale-up and additional batches manufacture, 
certain failure modes with a low occurrence frequency 
during development were often observed (i.e., had high 
probability of occurrence); this reveals the importance 
of revising the RA throughout the product’s lifecycle. 
The same principle applies to the likelihood of detec-
tion, which quantifies how easy and quick the detec-
tion of a certain failure mode is. The detectability scale 
ranged from 2 (if the failure mode was easily and always 
detected) to a rank of 10 (when the failure mode was hard 
to detect and only detected in less than 67% of the cases).

Along the FMEA, about 100 failure modes were identi-
fied, with the majority (90%) being classified as easily and 
always detected (detectability rank of 2; and with a RPN 
not greater than 72) since there were reliable detection 
controls in place and the process automatically prevented 
further processing. Moreover, only 10% of the identified 
failure modes had a RPN equal to or greater than 128, but 
none exceeded the predefined threshold (RPN of 288).

More than 40% of the failure modes identified in the 
RA were related to UO2 operation, followed by UO7 
operation with about 25% of the failure modes.

A robust control strategy, with a strong monitoring 
plan, can help reduce the occurrence and/or improve the 
detectability of specific failure modes, thus mitigating 
risk.

After finalizing the RA, despite none of the classified 
failure modes surpassing the RPN threshold, the techni-
cal team decided to address some of the ones with high-
ranking RPN values. For example, a mitigation action 
was defined for a failure mode with a RPN value of 256. 
The action was a verification step for a certain equip-
ment to check for its integrity status. By implementing 
this mitigation action, the RPN dropped to an acceptable 
value (RPN = 128) due to an improvement in the failure 
mode’s detectability (detection rank dropped from 8 to a 
value of 4). This verification step was added to the control 
strategy as a preventive control.

By the end of process development (Fig. 1), the process 
control strategy was defined based on the RA exercise 
and the characteristics of the NOR/DS. The control strat-
egy was formalized in several facilitation sessions with a 
multidisciplinary team and the support of iRISKTM risk 
management platform (iRISK, 2021). The control strategy 
was composed by preventive controls (e.g., equipment 
calibration), detective controls (e.g., alarms), and in-pro-
cess controls, amongst others.

Product lifecycle management
By adopting QbD during pharmaceutical development, 
deep process and product understanding were obtained, 
allowing the creation of a knowledge base for the product. 
With a higher understanding of the relationship between 

the process and the product, it is possible to know what 
impact a certain change in process will have, support-
ing the decision-making flow (ISPE, 2011). Besides, it 
is important to update the knowledge base whenever a 
critical change (e.g., change in supplier, change of equip-
ment) or deviation (e.g., equipment out of calibration, 
error in following a given operating instruction) occurs. 
The change control system handles changes done in the 
context of continuous improvement or by necessity (e.g., 
change of a raw material supplier). The change must be 
evaluated with a knowledge and risk-based approach, 
hence why it is important to keep the risk and knowl-
edge base updated. Depending on the type of change, its 
implementation might require prior approval from the 
regulatory authorities (ICH, 2019). There is an interactive 
flow of information between the risk management and 
data/knowledge management systems, as represented in 
Fig. 8. The use of monitoring systems and the establish-
ment of a Continued Process Verification (CPV) plan, as 
well as the application of data analysis strategies, allow 
the continuous flow of knowledge regarding the state of 
the process. This information can be used to update the 
RA, supporting the identification of new risks that might 
be detected and revision of existing ones. Depending on 
their criticality, risks might have to be addressed and the 
control strategy may need to be improved by implement-
ing risk mitigation actions. An improved control strategy 
should be able to keep the process in control; this can be 
monitored in the CPV programme. This flow of infor-
mation should be managed during the entire product’s 
lifecycle for the resulting knowledge base to be repre-
sentative of the current situation regarding the product’s 
quality and the process’s performance.

Product lifecycle management activities include all that 
was done through development until the product is no 
longer commercialized. It is important to look at lifecycle 
management at a commercial stage through a continu-
ous improvement lens since it is about maximizing the 
value of the product to the patient (Tiene, 2017). This 
can include changes in formulation, process unit opera-
tions, packaging, delivery systems, or even the inclusion 
of Information Technology or automation solutions for 
improving and automatizing the collection and assess-
ment of data and risks. The use of an up-to-date knowl-
edge base regarding the product and process greatly 
supports the selection of improvement actions since their 
impact will be better understood.

Conclusion
This article describes a successful application of Qual-
ity by Design to the development of a pharmaceutical 
generic drug product (coated tablet form). By following 
a QbD approach, a significant reduction of 30% in the 
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overall development and validation time was achieved 
when compared to a traditional approach. The collec-
tion of knowledge in a systematic manner allowed the 
definition of a robust process that will consistently 
achieve the desired product quality. Future decision-
making and continuous improvement activities will 
likewise be supported by the gained product and pro-
cess understanding. One may expect that its lifecycle 
management to be much less unpredictable given the 
much higher level of process and product knowledge 
established. Additionally, this methodology can be 
easily transferred to the development of other prod-
ucts, bringing in further acceleration to the standard 
pharmaceutical development process. Overall, a more 
efficient and with enhanced quality critical path was 
followed and shown feasible. This translates into higher 
quality, safety, and efficacy of medicines for patients.
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