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Utilizing cross‑product prior knowledge 
to rapidly de‑risk chemical liabilities 
in therapeutic antibody candidates
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Abstract 

There is considerable pressure in the pharmaceutical industry to advance better molecules faster. One pervasive 
concern for protein-based therapeutics is the presence of potential chemical liabilities. We have developed a simple 
methodology for rapidly de-risking specific chemical concerns in antibody-based molecules using prior knowledge 
of each individual liability at a specific position in the molecule’s sequence. Our methodology hinges on the develop-
ment of sequence-aligned chemical liability databases of molecules from different stages of commercialization and 
on sequence-aligned experimental data from prior molecules that have been developed at Amgen. This approach 
goes beyond the standard practice of simply flagging all instances of each motif that fall in a CDR. Instead, we de-risk 
motifs that are common at a specific site in commercial mAb-based molecules (and therefore did not previously pose 
an insurmountable barrier to commercialization) and motifs at specific sites for which we have prior experimental 
data indicating acceptably low levels of modification. We have used this approach successfully to identify candidates 
in a discovery phase program with exclusively very low risk potential chemical liabilities. Identifying these candidates 
in the discovery phase allowed us to bypass protein engineering and accelerate the program’s timeline by 6 months.

Keywords:  Antibody, Chemical liabilities, In silico, Cross-product analysis

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

Introduction
Pharmaceutical candidates must be screened for many 
different potential liabilities that could adversely affect 
their manufacturability, storage, and function. Many of 
these potential liabilities for protein-based therapeutics 
including monoclonal antibodies (mAb) like viscosity, 
aggregation, pharmacokinetics, and process yields, can 
be measured as attributes for the molecule as a whole. 
Chemical liabilities on the other hand are associated 
with a specific amino acid residue within the sequence 
of the molecule. Manifestations of any of these attrib-
utes at an inappropriate level could be catastrophic to 
drug development, so considerable time and money 
are invested to predict and prevent their appearance. 

Predicting these attributes as early as possible can allow 
molecules that are likely to harbor unfavorable charac-
teristics to be removed from the screening process early 
on or engineered to remediate any shortcomings. The 
majority of the in silico predictive models created to date 
have been based on first principles (Agrawal et al. 2016, 
2018; Chennamsetty et al. 2015; Sáenz-Suárez et al. 2016; 
Sharma et  al. 2014), as it is difficult to amass datasets 
that are both large enough, and diverse enough, to train 
effective machine learning models for biologics—save for 
a few notable exceptions (Jia and Sun 2017; Sankar et al. 
2018; Yang et al. 2017). These models have seen different 
levels of success, but none has been widely implemented 
in the industry. There are a handful of themes that are 
becoming generally accepted: negative charge patches in 
the variable region of a mAb predictive of high viscosity 
(Agrawal et al. 2016; Sharma et al. 2014; Chaudhri et al. 
2013; Yadav et al. 2012; Li et al. 2014; Buck et al. 2015), 
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positive charge patches in the variable region correlating 
with poor pharmacokinetics (Schoch et al. 2015; Boswell 
et al. 2010; Igawa et al. 2010; Khawli et al. 2004), solvent 
accessibility correlating with tryptophan (Sharma et  al. 
2014; Barnett et  al. 2019; Folzer et  al. 2015; Ehrenshaft 
et  al. 2015), and methionine oxidation (Agrawal et  al. 
2018; Chennamsetty et al. 2015; Sankar et al. 2018; Yang 
et al. 2017; Barnett et al. 2019), but each research group 
tends to develop their own model based on their own 
dataset, and there is seldom any agreement on a preferred 
method. Here, we detail a different take on attribute pre-
diction, focusing specifically on de-risking potential 
chemical liabilities by directly comparing to cross-prod-
uct sequence and experiment databases of internal and 
external molecules. Our approach hinges on the growing 
availability of data from prior antibody-based molecules 
across all stages of the pipeline, from discovery to late 
phase, and is sensitive to the fact that in most cases we 
still lack the requisite size and breadth of data required to 
yield functional machine learning models.

The case for utilizing cross‑product data
The pharmaceutical industry is growing, with a total 
global market of USD 1.23 trillion in 2020 projected to 
increase to $1.7 trillion by 2025. Growth in the market 
overall leads to increased competition for specific targets 
and increased pressure to achieve first to market status 
and the associated 6% average increase in market share 
(Pharma’s first-to-market advantage | McKinsey 2021). 
Given that most potential drug targets are simultane-
ously researched by multiple companies, the pressure 
to be first to market has led to an increasing focus on 
speed of development. Still, getting to market first with 
an inferior product is not acceptable, as a better succes-
sor molecule can rapidly render those first-to-market 
benefits obsolete. Molecules in this intensely competitive 
environment cannot afford to be burdened with liabilities 
that will affect manufacturing, distribution, or patient 
experience, but they still need to get to market faster than 
the competition.

In order to move molecules through the pipeline more 
rapidly, one should be able to effectively predict any 
potential issues a candidate molecule could face and 
either reject that molecule outright or rapidly engineer 
out those liabilities. To do this effectively without wast-
ing time and resources, engineering efforts need to be 
pinpointed to liabilities that are most likely to be prob-
lematic to avoid over-engineering. Many of the standard 
prediction methods for chemical liabilities (e.g., scanning 
for deamidation by motif ) have a tendency to over-pre-
dict, leading to extensive engineering efforts to remediate 
potential issues that would have never posed a problem 
if left unaltered. Existing predictive modeling efforts seek 

to reduce the burden of engineering by using computa-
tional models to more effectively predict the specific resi-
dues in a molecule’s sequence that are most likely to be 
problematic. In our method, we use a simple statistical 
approach to effectively utilize the ever-growing array of 
data that has been collected from previously studied mol-
ecules to rapidly and thoroughly de-risk individual sites 
in new molecules of interest.

Cross‑product sequence analysis to rapidly derisk potential 
chemical liabilities
Our approach hinges on the fact that antibody-based 
molecules, which make up the majority of therapeuti-
cally relevant proteins, are built onto a highly conserved 
immunoglobulin scaffold. This conservation makes it 
possible to rapidly gain structural information about a 
given site on a molecule simply by aligning its sequence 
to a reference framework. There are several prominent 
methodologies in the literature for numbering the resi-
dues of an antibody’s sequence based on alignment to a 
reference (Kabat (Te Wu and Kabat 1970), Chothia (Al-
Lazikani et  al. 1997), AHo (Annemarie and Andreas 
2001), IMGT (Lefranc et al. 2005), etc.). For the purpose 
of aligning residue level information to structure, we pre-
fer the AHo numbering system (Annemarie and Andreas 
2001) because it more appropriately handles CDR loops 
of differing lengths (Fig. 1A, B); however, our approach is 
general enough to utilize alignment in any other scheme. 
Having numbered residues correspond to specific posi-
tions in the immunoglobulin structure allows you to 
make inferences about the environment that a given resi-
due (or sequence motif ) will experience. We can then use 
this as the basis for comparing a motif at a given position 
to both sequence prevalence data and experimental data 
from prior molecules that also harbored that same motif 
at the same aligned position.

By pre-aligning tables of predicted hotspots across a 
database of sequences to a reference numbering system, 
we can rapidly compare a specific site in a molecule of 
interest to other molecules that achieved varying levels of 
success and apply a kind of “survival of the fittest mol-
ecule” approach to determining if a particular site in a 
particular molecule is likely to be problematic (Fig. 2A). 
Sites that are extremely common in existing commercial 
mAb-based molecules (commercial mAb-based mol-
ecules here means FDA or EU approved molecules for 
which 94 sequences were publicly available at the time 
of publication) are unlikely to cause an issue that would 
be disruptive to commercialization and can be effectively 
de-risked. As an example, there is a potential methionine 
oxidation site located at position 41 in H_CDR1 that is 
present in >50% of commercial mAb-based molecules 
(Table 1). The high prevalence of methionine residues at 
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Fig. 1  Reference alignment of sequences. All sequences are aligned to the AHo system with other numbering systems shown above each 
indicated sequence. A Comparison of structures from commercial mAb-based molecules with Trp at AHo position 41 and crystal structures in the 
PDB. The Trp at position 41 in the Aho numbering system falls at 35 or 35A in the Kabat system (red highlighted column) even though this residue 
is structurally identical across the different mAb crystal structures (Trp41 shown as sticks and circled in Red; PDB 4X7T (Jensen et al. 2015), green; 
PDB 5SX5 (Sickmier et al. 2016), grey; PDB 6B3S (Bagchi et al. 2018), blue). B Comparison of structures from commercial mAb-based molecules with 
Met at position 136 in AHo numbering and crystal structures in the PDB. The Met at AHo position 136 is numbered 100A, 100E, 100G, or 100M in 
the Kabat system across the different molecules (red highlighted column) even though crystal structures indicate the position of this Met is highly 
homologous across the structures (Met136 shown as sticks and circled in Red; PDB 6AL4 (Teplyakov et al. 2018), light blue; PDB 5WUV (Lee et al. 
2017), light green; PDB 6UMH (Garces et al. 2020), light cyan; PDB 3GIZ (Du et al. 2009), light gray)
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Fig. 2  Cross-product analysis of CDR potential liabilities. A Cross-product motif prevalence showing the percentage of commercial mAbs that have 
the same motif at the same position as the query (mAb1) in the aligned sequence. Residue numbers correspond to the linear position in mAb1. B 
Box plots of experimental data spanning discovery to late phase from prior molecules under various stress conditions with the same motif at the 
same position in the aligned sequence as the query (mAb1) provide additional insight into the likelihood and potential magnitude of modifications 
in the query sequence
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this site indicates that it is generally not an impediment 
to commercialization. The exact frequency cutoff below 
which a site can effectively be de-risked should be defined 
by the risk tolerance acceptable to a given program.

To supplement this purely sequence-based approach, 
we have applied a similar principle to the experimen-
tal chemical liability data from prior molecules. By 

templating our prior molecule experimental chemical 
liabilities data and aligning it to the AHo numbering sys-
tem, we can rapidly query the available data across prior 
molecules that share any given hotspot with a molecule 
of interest. In this way, we can instantly examine both the 
average and the spread of the available data for a given 
motif at a given site across prior molecules and use this 

Table 1  Most common potential chemical liability motifs among variable regions of commercial mAbs

Potential Chemical Liability AHo# Position Motif Domain % Commercial 
mAbs (n = 94)

Tryptophan Oxidation 43 H_FR2 W HC 100

Tryptophan Oxidation 139 H_FR4 W HC 100

Tryptophan Oxidation 43 L_FR2 W LC 98.94

Tryptophan Oxidation 54 H_FR2 W HC 98.94

Isomerization 100 H_FR3 DT HC 89.36

O-Xylosylation 81 L_FR3 GSG LC 89.36

O-Xylosylation 83 L_FR3 GSG LC 85.11

Glycation 47 L_FR2 KPG LC 80.85

Glycation 148 L_FR4 KRT LC 79.79

Methionine Oxidation 41 H_CDR1 M HC 63.83

Lysine Hydroxylation 75 H_CDR2 KG HC 58.51

Methionine Oxidation 4 L_FR1 M LC 57.45

Lysine Hydroxylation 50 H_FR2 KG HC 56.38

Glycation 50 H_FR2 KGL HC 55.32

Glycation 144 L_FR4 KVE LC 52.13

Methionine Oxidation 93 H_FR3 M HC 51.06

Glycation 75 H_CDR2 KGR HC 48.94

Pyroglutamic Acid 1 H_FR1 Q HC 48.94

Deamidation 94 H_FR3 NS HC 47.87

Pyroglutamic Acid 1 H_FR1 E HC 47.87

Glycation 53 L_FR2 KLL LC 46.81

Isomerization 17 L_FR1 DR LC 46.81

Glycation 50 L_FR2 KAP LC 43.62

Isomerization 137 H_CDR3 DY HC 42.55

O-Sulfation 138 H_CDR3 DY HC 42.55

Glycation 14 H_FR1 KPG HC 39.36

Isomerization 83 H_FR3 DN HC 38.3

Methionine Oxidation 91 H_FR3 M HC 37.23

Deamidation 87 H_FR3 NT HC 36.17

Non-Consensus N-linked Glycosylation 87 H_FR3 SKN HC 36.17

Glycation 24 H_FR1 KAS HC 34.04

Glycation 86 H_FR3 KNT HC 30.85

Glycation 144 L_FR4 KLE LC 30.85

Isomerization 72 H_CDR2 DS HC 28.72

Glycation 13 H_FR1 KKP HC 27.66

Isomerization 76 L_FR3 DR LC 27.66

Isomerization 83 H_FR3 DT HC 27.66

Glycation 20 H_FR1 KVS HC 25.53

Deamidation 42 L_CDR1 NW LC 24.47

Deamidation 84 H_FR3 NS HC 24.47
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as an indicator of risk likelihood for the same motif at the 
same site in a molecule of interest (Fig. 2B). Specific sites 
that show minimal or no modification across all prior 
programs are unlikely to suddenly become problematic 
in a new program, and our confidence in this assertion 
increases as the number of data points increases or as 
variance in the data decreases.

Currently, we leverage this cross-product sequence 
analysis method on applicable discovery and devel-
opment stage programs to accelerate molecules with 
acceptably low  risk profiles or to target protein engi-
neering resources towards the specific sites that we can-
not effectively de-risk. In a noteworthy example of this 
method’s success, we utilized an early version of this 
methodology to de-risk key theoretical sites in a discov-
ery stage mAb program (Fig.  3). By using prior knowl-
edge from cross-product analysis, we were able to bypass 
the protein engineering stage and move molecules from 
a discovery campaign directly to development without 
engineering to remediate potential chemical liability 
sites. In this case, an Asn residue in H_CDR2 of multi-
ple lead candidates was identified as a potential deamida-
tion risk. This NT motif beginning at AHo position 67 is 
present in 7.4% of commercial molecules, indicating that 
there were multiple examples of mAb-based molecules 
that were able to successfully reach commercialization 
with this site at this position. Prior internal molecules 
with the same motif at the same structural position were 
also identified, and these molecules had previously been 
shown to have extremely low levels of modification at this 
site during development (available prior molecule experi-
mental data in our dataset showed deamidation levels 

were below the limit of detection for available molecules 
under all recorded stress conditions). By leveraging this 
prior knowledge in the decision to move these discovery 
phase molecules forward without protein engineering, 
the program’s timeline was accelerated by approximately 
6 months. Different companies will likely have different 
existing internal metrics to define what an acceptable 
level of modification is, and this will also likely be vari-
able for different programs with diverse target candidate 
profiles. We make no recommendations for what will 
be necessary to meet the needs of any specific program, 
but as a general rule, we often look for candidates with 
all possible chemical liability sites having modification 
levels below 2–5% under mild stress conditions in prior 
molecule data (temperatures between 4 and 40 °C, time 
points out to a max of 4 weeks, pH from 4.5–8.0, cool 
white light stress up to 200 klux*hr). In order to meet 
the realization that different programs will have different 
requirements, additional data under harsher stress condi-
tions (longer time points, added chemical oxidants, etc.) 
is available in the dataset on demand.

Key requirements, learnings, and future perspectives
This data-driven cross-product approach to de-risking 
attributes provides incredible value for rapidly assess-
ing the likelihood that a potential chemical liability will 
impact a candidate molecule. In order to implement 
this approach, an institution will first need to establish 
aligned sequence databases of commercial molecules 
and clinical candidates and pre-screen those sequences 
for hotspots. For our sequence sets, we focused on three 
different levels of success to get some granularity into 

Fig. 3  Potential deamidation site de-risked using the cross-product methodology. NT at AHo 67 in H_CDR2 was identified as a potential risk 
in two candidate molecules (gray, right). Homology models of variable domains from molecules harboring the NT site of interest are shown as 
cartoons with the NT site shown as sticks. The cross-product analysis identified 7 molecules that had already been successfully commercialized that 
shared the same motif at the same site (green, left). Additional molecules for which we had readily available internal data showed no detectable 
modification at this site under tested stress conditions (blue, middle)
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the frequency of hotspots at specific sites in molecules 
moving through the drug development pipeline: mole-
cules that progressed to process development, molecules 
selected for first-in-human (FIH) development, and mol-
ecules that achieved marketing authorization approval. 
Second, the institution will need to develop a suitable 
data template to maintain sequence-aligned experimental 
chemical liabilities data and, ideally, populate this data-
base both proactively and retroactively through all stages 
of development from discovery to late stage. We are 
actively templating data from our historical programs, 
with data from hundreds of unique experiments avail-
able in our dataset at the time of this publication. While 
we have certainly seen increasing value from our grow-
ing dataset, we also found considerable value in early 
iterations of this endeavor when data on only a limited 
number of molecules was available, making this approach 
easily within reach even for many smaller organizations 
in the industry. Finally, to make relevant subsets of the 
data rapidly available for de-risking the specific hotspots 
in a molecule of interest, software needs to be developed 
to rapidly access the relevant data from the datasets and 
present it in a concise manner. The most challenging part 
of this process for us has been developing a template for 
our reference aligned chemical liabilities data and pop-
ulating it with data from past programs as most of this 
data has historically been stored in PowerPoint and PDF 
files which has required significant manual effort to find, 
interpret, structure, and clean so that it can be compared 
across various programs. Forward-thinking companies 
will do well to proactively implement strategies to guar-
antee that future data is automatically stored in a data-
science friendly template to make it easily accessible for 
this and any future use-cases.

Limitations and caveats
The approach described herein is an extremely rapid 
data-driven method for de-risking potential chemical 
liability sites in candidate molecules. While there are 
certainly many benefits to directly querying and assess-
ing sequence and analytical data from prior molecules, it 
is also important to keep in mind the limitations of this 
approach. Perhaps the most important of which is that in 
its present form, these insights are principally of value to 
antibody-based molecules. While antibody-based mol-
ecules represent one of the largest and fastest-growing 
classes of pharmaceuticals, they are certainly not the only 
class of biologic therapeutics, and in its present form, this 
methodology would not be translatable to other mol-
ecule types. Additionally, this approach centers on the 
assumption that the modification propensity of a specific 
potential chemical liability site can be predicted from 
the combination of its sequence motif and the position 

of that motif within a sequence alignment. This assumes 
that chemical liability motifs which align together via one 
of the major antibody sequence alignment/numbering 
systems (again, our preference is for AHo) will end up in 
a similar structural position with a similar local environ-
ment. While the fact that all antibody domains reliably 
adopt immunoglobulin folds and the preponderance of 
available structures would indicate that there is a tremen-
dous amount of structural similarity in these domains, 
certainly individual chemical liability motifs on indi-
vidual molecules could fall outside of these assumptions 
and render the prior molecule data less relevant. Changes 
in solvent exposure, adjacent charged or hydrophobic 
patches, or regional flexibility could all potentially affect 
the modification propensity of a specific residue. While 
some of this variability in local structural environments 
will be reflected in the spread of prior analytical data, it is 
of course still possible for a new molecule to be a struc-
tural outlier and subsequently behave outside of what 
would be expected based on prior data. It is thus impor-
tant to use this sort of data-driven approach to guide the 
de-risking process in concert with expert oversite in a 
phase-appropriate manner. As the number of candidates 
is reduced towards the selection of a final first-in-human 
trial candidate, additional scrutiny of candidates for 
structural relatedness to molecules in the prior knowl-
edge dataset is advisable.

Conclusions and future directions
We have developed a straightforward approach to uti-
lizing prior knowledge to de-risk potential chemical 
liabilities. The method does not require any type of 
sophisticated modeling and is therefore not burdened 
by the need for extremely large datasets or continual 
retraining of the model. Instead, our method relies on 
the fact that all immunoglobulin-based molecules will 
adopt the same fold and that residues and motifs can 
be mapped to specific positions on the 3-dimensional 
structure simply by aligning the sequence to a reference 
numbering system. We can then assume that information 
we gather about a motif at a particular reference posi-
tion will be more relevant to that motif at the same ref-
erence position in future molecules because of the high 
degree of conservation inherent in the immunoglobu-
lin fold. This approach will of course lose some predic-
tive value in regions like H-CDR3 where loop lengths 
and conformations can be quite variable, but it does not 
completely abrogate all predictive value here. By using a 
numbering system like that proposed by Honegger et al. 
(Annemarie and Andreas 2001), it is still possible to draw 
parallels using this relative spatial positioning even in 
the more variable CDR loops. This information will be 
more relevant among CDR loops of similar length and 



Page 8 of 9Jacobitz et al. AAPS Open            (2022) 8:10 

sequence, and data from motifs falling at the same site in 
CDR loops that are more closely related to the sequence 
of interest should be viewed with additional weight. Even 
without narrowing the dataset to the most similar CDRs, 
potential predictive power can still be rapidly assessed 
by simply looking at the variance in the cross-product 
experimental data at a particular site, presuming it is 
common enough to have yielded multiple data-points.

This proposed methodology for de-risking attributes 
is intended to bridge the gap between the current para-
digm of gross over-prediction of potential liabilities and 
a future state where there is enough data available to 
support high accuracy predictive modeling. This main 
requirement for implementing this methodology is the 
creation of templated cross-product datasets which will 
become more valuable not only within the predictive 
framework described here, but also for training machine 
learning models in the future, as the size of the datasets 
grows.
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